Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,597 Bytes
1dddd5f f65f11f 1dddd5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from PIL import Image, ImageEnhance
import cv2
import numpy as np
from preprocess.humanparsing.run_parsing import Parsing
parsing_model = Parsing(0)
class BackgroundProcessor:
@classmethod
def add_background(cls, human_img: Image, background_img: Image):
human_img = human_img.convert("RGB")
width = human_img.width
height = human_img.height
# Create mask image
parsed_img, _ = parsing_model(human_img)
mask_img = parsed_img.convert("L")
mask_img = mask_img.resize((width, height))
background_img = background_img.convert("RGB")
background_img = background_img.resize((width, height))
# Convert to numpy arrays
human_np = np.array(human_img)
mask_np = np.array(mask_img)
background_np = np.array(background_img)
# Ensure mask is 3-channel (RGB) for compatibility
mask_np = np.stack((mask_np,) * 3, axis=-1)
# Apply the mask to human_img
human_with_background = np.where(mask_np > 0, human_np, background_np)
# Convert back to PIL Image
result_img = Image.fromarray(human_with_background.astype('uint8'))
# Return or save the result
return result_img
@classmethod
def temp_v2(cls, human_img_path, background_img_path, mask_img_path):
# Load the images
foreground_img = cv2.imread(human_img_path).resize((768,1024)) # The segmented person image
background_img = cv2.imread(background_img_path) # The new background image
mask_img = cv2.imread(mask_img_path, cv2.IMREAD_GRAYSCALE) # The mask image from the human parser model
# Ensure the foreground image and the mask are the same size
if foreground_img.shape[:2] != mask_img.shape[:2]:
raise ValueError("Foreground image and mask must be the same size")
# Resize background image to match the size of the foreground image
background_img = cv2.resize(background_img, (foreground_img.shape[1], foreground_img.shape[0]))
# Create an inverted mask
mask_inv = cv2.bitwise_not(mask_img)
# Convert mask to 3 channels
mask_3ch = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2BGR)
mask_inv_3ch = cv2.cvtColor(mask_inv, cv2.COLOR_GRAY2BGR)
# Extract the person from the foreground image using the mask
person = cv2.bitwise_and(foreground_img, mask_3ch)
# Extract the background where the person is not present
background = cv2.bitwise_and(background_img, mask_inv_3ch)
# Combine the person and the new background
combined_img = cv2.add(person, background)
# Refine edges using Gaussian Blur (feathering technique)
blurred_combined_img = cv2.GaussianBlur(combined_img, (5, 5), 0)
# Post-processing: Adjust brightness, contrast, etc. (optional)
alpha = 1.2 # Contrast control (1.0-3.0)
beta = 20 # Brightness control (0-100)
post_processed_img = cv2.convertScaleAbs(blurred_combined_img, alpha=alpha, beta=beta)
# Save the final image
# cv2.imwrite('path_to_save_final_image.png', post_processed_img)
# Display the images (optional)
cv2.imshow('Foreground', foreground_img)
cv2.imshow('Background', background_img)
cv2.imshow('Mask', mask_img)
cv2.imshow('Combined', combined_img)
cv2.imshow('Post Processed', post_processed_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
return post_processed_img
@classmethod
def add_background_v3(cls, foreground_pil: Image, background_pil: Image):
foreground_pil= foreground_pil.convert("RGB")
width = foreground_pil.width
height = foreground_pil.height
# Create mask image
parsed_img, _ = parsing_model(foreground_pil)
mask_pil = parsed_img.convert("L")
# Apply a threshold to convert to binary image
# mask_pil = mask_pil.point(lambda p: 1 if p > 127 else 0, mode='1')
mask_pil = mask_pil.resize((width, height))
# Resize background image
background_pil = background_pil.convert("RGB")
background_pil = background_pil.resize((width, height))
# Load the images using PIL
#foreground_pil = Image.open(human_img_path).convert("RGB") # The segmented person image
#background_pil = Image.open(background_img_path).convert("RGB") # The new background image
#mask_pil = Image.open(mask_img_path).convert('L') # The mask image from the human parser model
# Resize the background to match the size of the foreground
#background_pil = background_pil.resize(foreground_pil.size)
# Resize mask
#mask_pil = mask_pil.resize(foreground_pil.size)
# Convert PIL images to OpenCV format
foreground_cv2 = cls.pil_to_cv2(foreground_pil)
background_cv2 = cls.pil_to_cv2(background_pil)
#mask_cv2 = pil_to_cv2(mask_pil)
mask_cv2 = np.array(mask_pil) # Directly convert to NumPy array without color conversion
# Ensure the mask is a single channel image
if len(mask_cv2.shape) == 3:
mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
# Threshold the mask to convert it to pure black and white
_, mask_cv2 = cv2.threshold(mask_cv2, 0, 255, cv2.THRESH_BINARY)
# Ensure the mask is a single channel image
#if len(mask_cv2.shape) == 3:
# mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
# Create an inverted mask
mask_inv_cv2 = cv2.bitwise_not(mask_cv2)
# Convert mask to 3 channels
mask_3ch_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_GRAY2BGR)
mask_inv_3ch_cv2 = cv2.cvtColor(mask_inv_cv2, cv2.COLOR_GRAY2BGR)
# Extract the person from the foreground image using the mask
person_cv2 = cv2.bitwise_and(foreground_cv2, mask_3ch_cv2)
# Extract the background where the person is not present
background_extracted_cv2 = cv2.bitwise_and(background_cv2, mask_inv_3ch_cv2)
# Combine the person and the new background
combined_cv2 = cv2.add(person_cv2, background_extracted_cv2)
# Refine edges using Gaussian Blur (feathering technique)
blurred_combined_cv2 = cv2.GaussianBlur(combined_cv2, (5, 5), 0)
# Convert the result back to PIL format
combined_pil = cls.cv2_to_pil(blurred_combined_cv2)
"""
# Post-processing: Adjust brightness, contrast, etc. (optional)
enhancer = ImageEnhance.Contrast(combined_pil)
post_processed_pil = enhancer.enhance(1.2) # Adjust contrast
enhancer = ImageEnhance.Brightness(post_processed_pil)
post_processed_pil = enhancer.enhance(1.2) # Adjust brightness
"""
# Save the final image
# post_processed_pil.save('path_to_save_final_image_1.png')
# Display the images (optional)
#foreground_pil.show(title="Foreground")
#background_pil.show(title="Background")
#mask_pil.show(title="Mask")
#combined_pil.show(title="Combined")
# post_processed_pil.show(title="Post Processed")
return combined_pil
@classmethod
def replace_background(cls, foreground_img_path: str, background_img_path: str):
# Load the input image (with alpha channel) and the background image
#input_image = cv2.imread(foreground_img_path, cv2.IMREAD_UNCHANGED)
input_image = cv2.imread(foreground_img_path)
background_image = cv2.imread(background_img_path)
# Ensure the input image has an alpha channel
if input_image.shape[2] != 4:
raise ValueError("Input image must have an alpha channel")
# Extract the alpha channel
alpha_channel = input_image[:, :, 3]
# Resize the background image to match the input image dimensions
background_image = cv2.resize(background_image, (input_image.shape[1], input_image.shape[0]))
# Convert alpha channel to 3 channels
alpha_channel_3ch = cv2.cvtColor(alpha_channel, cv2.COLOR_GRAY2BGR)
alpha_channel_3ch = alpha_channel_3ch / 255.0 # Normalize to 0-1
# Extract the BGR channels of the input image
input_bgr = input_image[:, :, :3]
# Blend the images using the alpha channel
foreground = cv2.multiply(alpha_channel_3ch, input_bgr.astype(float))
background = cv2.multiply(1.0 - alpha_channel_3ch, background_image.astype(float))
combined_image = cv2.add(foreground, background).astype(np.uint8)
# Save and display the result
cv2.imwrite('path_to_save_combined_image.png', combined_image)
cv2.imshow('Combined Image', combined_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Function to convert PIL Image to OpenCV format
@classmethod
def pil_to_cv2(cls, pil_image):
open_cv_image = np.array(pil_image)
# Convert RGB to BGR if it's a 3-channel image
if len(open_cv_image.shape) == 3:
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
# Function to convert OpenCV format to PIL Image
@classmethod
def cv2_to_pil(cls, cv2_image):
# Convert BGR to RGB if it's a 3-channel image
if len(cv2_image.shape) == 3:
cv2_image = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(cv2_image)
return pil_image
|