Commit
•
6fc91c7
1
Parent(s):
c668bc2
feat: add org dropdown
Browse filesfix: missing logs upload try
fix: non-org-based dataset push to hub
- .DS_Store +0 -0
- app.py +1 -1
- src/distilabel_dataset_generator/__init__.py +114 -0
- src/distilabel_dataset_generator/sft.py +103 -50
- src/distilabel_dataset_generator/utils.py +28 -1
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -5,7 +5,7 @@ from src.distilabel_dataset_generator.sft import demo
|
|
5 |
demo = gr.TabbedInterface(
|
6 |
[demo],
|
7 |
["Supervised Fine-Tuning"],
|
8 |
-
title="Distilabel Dataset Generator",
|
9 |
head="⚗️ Distilabel Dataset Generator",
|
10 |
)
|
11 |
|
|
|
5 |
demo = gr.TabbedInterface(
|
6 |
[demo],
|
7 |
["Supervised Fine-Tuning"],
|
8 |
+
title="⚗️ Distilabel Dataset Generator",
|
9 |
head="⚗️ Distilabel Dataset Generator",
|
10 |
)
|
11 |
|
src/distilabel_dataset_generator/__init__.py
CHANGED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Optional, Union
|
3 |
+
|
4 |
+
import distilabel
|
5 |
+
import distilabel.distiset
|
6 |
+
from distilabel.utils.card.dataset_card import (
|
7 |
+
DistilabelDatasetCard,
|
8 |
+
size_categories_parser,
|
9 |
+
)
|
10 |
+
from huggingface_hub import DatasetCardData, HfApi
|
11 |
+
|
12 |
+
|
13 |
+
class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset):
|
14 |
+
def _generate_card(
|
15 |
+
self,
|
16 |
+
repo_id: str,
|
17 |
+
token: str,
|
18 |
+
include_script: bool = False,
|
19 |
+
filename_py: Optional[str] = None,
|
20 |
+
) -> None:
|
21 |
+
"""Generates a dataset card and pushes it to the Hugging Face Hub, and
|
22 |
+
if the `pipeline.yaml` path is available in the `Distiset`, uploads that
|
23 |
+
to the same repository.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
repo_id: The ID of the repository to push to, from the `push_to_hub` method.
|
27 |
+
token: The token to authenticate with the Hugging Face Hub, from the `push_to_hub` method.
|
28 |
+
include_script: Whether to upload the script to the hugging face repository.
|
29 |
+
filename_py: The name of the script. If `include_script` is True, the script will
|
30 |
+
be uploaded to the repository using this name, otherwise it won't be used.
|
31 |
+
"""
|
32 |
+
card = self._get_card(
|
33 |
+
repo_id=repo_id,
|
34 |
+
token=token,
|
35 |
+
include_script=include_script,
|
36 |
+
filename_py=filename_py,
|
37 |
+
)
|
38 |
+
|
39 |
+
card.push_to_hub(
|
40 |
+
repo_id,
|
41 |
+
repo_type="dataset",
|
42 |
+
token=token,
|
43 |
+
)
|
44 |
+
if self.pipeline_path:
|
45 |
+
# If the pipeline.yaml is available, upload it to the Hugging Face Hub as well.
|
46 |
+
HfApi().upload_file(
|
47 |
+
path_or_fileobj=self.pipeline_path,
|
48 |
+
path_in_repo=distilabel.distiset.PIPELINE_CONFIG_FILENAME,
|
49 |
+
repo_id=repo_id,
|
50 |
+
repo_type="dataset",
|
51 |
+
token=token,
|
52 |
+
)
|
53 |
+
|
54 |
+
def _get_card(
|
55 |
+
self,
|
56 |
+
repo_id: str,
|
57 |
+
token: Optional[str] = None,
|
58 |
+
include_script: bool = False,
|
59 |
+
filename_py: Optional[str] = None,
|
60 |
+
) -> DistilabelDatasetCard:
|
61 |
+
"""Generates the dataset card for the `Distiset`.
|
62 |
+
|
63 |
+
Note:
|
64 |
+
If `repo_id` and `token` are provided, it will extract the metadata from the README.md file
|
65 |
+
on the hub.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
repo_id: Name of the repository to push to, or the path for the distiset if saved to disk.
|
69 |
+
token: The token to authenticate with the Hugging Face Hub.
|
70 |
+
We assume that if it's provided, the dataset will be in the Hugging Face Hub,
|
71 |
+
so the README metadata will be extracted from there.
|
72 |
+
include_script: Whether to upload the script to the hugging face repository.
|
73 |
+
filename_py: The name of the script. If `include_script` is True, the script will
|
74 |
+
be uploaded to the repository using this name, otherwise it won't be used.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
The dataset card for the `Distiset`.
|
78 |
+
"""
|
79 |
+
sample_records = {}
|
80 |
+
for name, dataset in self.items():
|
81 |
+
sample_records[name] = (
|
82 |
+
dataset[0] if not isinstance(dataset, dict) else dataset["train"][0]
|
83 |
+
)
|
84 |
+
|
85 |
+
readme_metadata = {}
|
86 |
+
if repo_id and token:
|
87 |
+
readme_metadata = self._extract_readme_metadata(repo_id, token)
|
88 |
+
|
89 |
+
metadata = {
|
90 |
+
**readme_metadata,
|
91 |
+
"size_categories": size_categories_parser(
|
92 |
+
max(len(dataset) for dataset in self.values())
|
93 |
+
),
|
94 |
+
"tags": [
|
95 |
+
"synthetic",
|
96 |
+
"distilabel",
|
97 |
+
"rlaif",
|
98 |
+
"distilabel-dataset-generator",
|
99 |
+
],
|
100 |
+
}
|
101 |
+
|
102 |
+
card = DistilabelDatasetCard.from_template(
|
103 |
+
card_data=DatasetCardData(**metadata),
|
104 |
+
repo_id=repo_id,
|
105 |
+
sample_records=sample_records,
|
106 |
+
include_script=include_script,
|
107 |
+
filename_py=filename_py,
|
108 |
+
references=self.citations,
|
109 |
+
)
|
110 |
+
|
111 |
+
return card
|
112 |
+
|
113 |
+
|
114 |
+
distilabel.distiset.Distiset = CustomDistisetWithAdditionalTag
|
src/distilabel_dataset_generator/sft.py
CHANGED
@@ -3,11 +3,18 @@ import os
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
|
|
6 |
from distilabel.llms import InferenceEndpointsLLM
|
7 |
from distilabel.pipeline import Pipeline
|
8 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
9 |
|
10 |
-
from src.distilabel_dataset_generator.utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
INFORMATION_SEEKING_PROMPT = (
|
13 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
@@ -118,11 +125,23 @@ User dataset description:
|
|
118 |
"""
|
119 |
|
120 |
MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
|
123 |
-
def _run_pipeline(
|
124 |
-
result_queue, _num_turns, _num_rows, _system_prompt, _token: str = None
|
125 |
-
):
|
126 |
with Pipeline(name="sft") as pipeline:
|
127 |
magpie_step = MagpieGenerator(
|
128 |
llm=InferenceEndpointsLLM(
|
@@ -131,19 +150,22 @@ def _run_pipeline(
|
|
131 |
magpie_pre_query_template="llama3",
|
132 |
generation_kwargs={
|
133 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
|
134 |
},
|
135 |
-
api_key=
|
136 |
),
|
137 |
-
n_turns=
|
138 |
-
num_rows=
|
139 |
-
system_prompt=
|
140 |
)
|
141 |
-
distiset = pipeline.run()
|
142 |
result_queue.put(distiset)
|
143 |
|
144 |
|
145 |
-
def
|
146 |
-
|
|
|
|
|
147 |
generate_description = TextGeneration(
|
148 |
llm=InferenceEndpointsLLM(
|
149 |
model_id=MODEL,
|
@@ -153,7 +175,7 @@ def _generate_system_prompt(_dataset_description, _token: OAuthToken = None):
|
|
153 |
"max_new_tokens": 2048,
|
154 |
"do_sample": True,
|
155 |
},
|
156 |
-
api_key=
|
157 |
),
|
158 |
use_system_prompt=True,
|
159 |
)
|
@@ -163,44 +185,58 @@ def _generate_system_prompt(_dataset_description, _token: OAuthToken = None):
|
|
163 |
[
|
164 |
{
|
165 |
"system_prompt": PROMPT_CREATION_PROMPT,
|
166 |
-
"instruction":
|
167 |
}
|
168 |
]
|
169 |
)
|
170 |
)[0]["generation"]
|
171 |
|
172 |
|
173 |
-
def
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
179 |
):
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
gr.Info("Started pipeline execution.")
|
182 |
result_queue = multiprocessing.Queue()
|
183 |
p = multiprocessing.Process(
|
184 |
target=_run_pipeline,
|
185 |
-
args=(result_queue,
|
186 |
)
|
187 |
p.start()
|
188 |
p.join()
|
189 |
distiset = result_queue.get()
|
190 |
|
191 |
-
if
|
192 |
gr.Info("Pushing dataset to Hugging Face Hub...")
|
|
|
193 |
distiset.push_to_hub(
|
194 |
-
repo_id=
|
195 |
-
private=
|
196 |
include_script=True,
|
197 |
-
token=
|
198 |
)
|
199 |
-
gr.Info("Dataset pushed to Hugging Face Hub: https://huggingface.co")
|
200 |
else:
|
201 |
# If not pushing to hub, generate the dataset directly
|
202 |
distiset = distiset["default"]["train"]
|
203 |
-
if
|
204 |
outputs = distiset.to_pandas()[["instruction", "response"]]
|
205 |
else:
|
206 |
outputs = {"conversation_id": [], "role": [], "content": []}
|
@@ -212,63 +248,80 @@ def _generate_dataset(
|
|
212 |
outputs["content"].append(message["content"])
|
213 |
return pd.DataFrame(outputs)
|
214 |
|
215 |
-
return pd.DataFrame(distiset.to_pandas())
|
216 |
-
|
217 |
|
218 |
with gr.Blocks(
|
219 |
title="⚗️ Distilabel Dataset Generator",
|
220 |
head="⚗️ Distilabel Dataset Generator",
|
221 |
) as demo:
|
222 |
-
|
|
|
|
|
|
|
|
|
223 |
|
224 |
dataset_description = gr.Textbox(
|
225 |
label="Provide a description of the dataset",
|
226 |
-
value=
|
227 |
)
|
228 |
|
229 |
-
btn_generate_system_prompt = gr.Button(
|
230 |
-
value="🧪 Generate Sytem Prompt",
|
231 |
-
)
|
232 |
|
233 |
-
system_prompt = gr.Textbox(
|
|
|
|
|
234 |
|
235 |
btn_generate_system_prompt.click(
|
236 |
-
fn=
|
237 |
inputs=[dataset_description],
|
238 |
outputs=[system_prompt],
|
239 |
)
|
240 |
|
241 |
btn_generate_sample_dataset = gr.Button(
|
242 |
-
value="🧪 Generate Sample Dataset of 5 rows and a single turn"
|
243 |
)
|
244 |
|
245 |
-
table = gr.Dataframe(label="Generated Dataset", wrap=True)
|
246 |
|
247 |
btn_generate_sample_dataset.click(
|
248 |
-
fn=
|
249 |
inputs=[system_prompt],
|
250 |
outputs=[table],
|
251 |
)
|
252 |
|
253 |
with gr.Row(variant="panel"):
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
|
|
|
|
|
264 |
|
265 |
btn_generate_full_dataset = gr.Button(
|
266 |
value="⚗️ Generate Full Dataset", variant="primary"
|
267 |
)
|
268 |
|
269 |
btn_generate_full_dataset.click(
|
270 |
-
fn=
|
271 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
)
|
273 |
|
|
|
274 |
demo
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
+
from distilabel.distiset import Distiset
|
7 |
from distilabel.llms import InferenceEndpointsLLM
|
8 |
from distilabel.pipeline import Pipeline
|
9 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
10 |
|
11 |
+
from src.distilabel_dataset_generator.utils import (
|
12 |
+
OAuthToken,
|
13 |
+
get_duplicate_button,
|
14 |
+
get_login_button,
|
15 |
+
get_org_dropdown,
|
16 |
+
list_orgs,
|
17 |
+
)
|
18 |
|
19 |
INFORMATION_SEEKING_PROMPT = (
|
20 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
|
125 |
"""
|
126 |
|
127 |
MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
|
128 |
+
DEFAULT_SYSTEM_PROMPT_DESCRIPTION = (
|
129 |
+
"A chemistry dataset for an assistant that explains chemical reactions and formulas"
|
130 |
+
)
|
131 |
+
DEFAULT_SYSTEM_PROMPT = "You are an AI assistant specializing in chemistry and chemical reactions. Your purpose is to help users understand and work with chemical formulas, equations, and reactions. Provide clear explanations of reaction mechanisms, assist in balancing chemical equations, and offer guidance on the interpretation of chemical structures. Explain the roles of reactants, products, catalysts, and solvents, and define key chemistry terms when necessary."
|
132 |
+
DEFAULT_DATASET = pd.DataFrame(
|
133 |
+
{
|
134 |
+
"instruction": [
|
135 |
+
"What is the term for the study of the structure and evolution of the Earth's interior. "
|
136 |
+
],
|
137 |
+
"response": [
|
138 |
+
"""The study of the structure and evolution of the Earth's interior is called geophysics, particularly the subfield of geology known as geodynamics, and more specifically the subfield of geology known as geotectonics. However, a more specific term for this study is "geology of the Earth's interior" or "Earth internal structure." However, the most commonly used term for this study is geophysics. """
|
139 |
+
],
|
140 |
+
}
|
141 |
+
)
|
142 |
|
143 |
|
144 |
+
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
|
|
|
|
|
145 |
with Pipeline(name="sft") as pipeline:
|
146 |
magpie_step = MagpieGenerator(
|
147 |
llm=InferenceEndpointsLLM(
|
|
|
150 |
magpie_pre_query_template="llama3",
|
151 |
generation_kwargs={
|
152 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
153 |
+
"do_sample": True,
|
154 |
},
|
155 |
+
api_key=token,
|
156 |
),
|
157 |
+
n_turns=num_turns,
|
158 |
+
num_rows=num_rows,
|
159 |
+
system_prompt=system_prompt,
|
160 |
)
|
161 |
+
distiset: Distiset = pipeline.run()
|
162 |
result_queue.put(distiset)
|
163 |
|
164 |
|
165 |
+
def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
166 |
+
if token is None:
|
167 |
+
raise gr.Error("Please sign in with Hugging Face to generate a dataset.")
|
168 |
+
os.environ["HF_TOKEN"] = token.token
|
169 |
generate_description = TextGeneration(
|
170 |
llm=InferenceEndpointsLLM(
|
171 |
model_id=MODEL,
|
|
|
175 |
"max_new_tokens": 2048,
|
176 |
"do_sample": True,
|
177 |
},
|
178 |
+
api_key=token.token,
|
179 |
),
|
180 |
use_system_prompt=True,
|
181 |
)
|
|
|
185 |
[
|
186 |
{
|
187 |
"system_prompt": PROMPT_CREATION_PROMPT,
|
188 |
+
"instruction": dataset_description,
|
189 |
}
|
190 |
]
|
191 |
)
|
192 |
)[0]["generation"]
|
193 |
|
194 |
|
195 |
+
def generate_dataset(
|
196 |
+
system_prompt,
|
197 |
+
num_turns=1,
|
198 |
+
num_rows=5,
|
199 |
+
private=True,
|
200 |
+
orgs_selector=None,
|
201 |
+
dataset_name=None,
|
202 |
+
token: OAuthToken = None,
|
203 |
):
|
204 |
+
if token is None:
|
205 |
+
raise gr.Error("Please sign in with Hugging Face to generate a dataset.")
|
206 |
+
if dataset_name is not None:
|
207 |
+
if not dataset_name:
|
208 |
+
raise gr.Error("Please provide a dataset name to push the dataset to.")
|
209 |
+
if orgs_selector is not None:
|
210 |
+
if not orgs_selector:
|
211 |
+
raise gr.Error(
|
212 |
+
f"Please select an organization to push the dataset to from: {list_orgs(token)}"
|
213 |
+
)
|
214 |
+
|
215 |
+
os.environ["HF_TOKEN"] = token.token
|
216 |
gr.Info("Started pipeline execution.")
|
217 |
result_queue = multiprocessing.Queue()
|
218 |
p = multiprocessing.Process(
|
219 |
target=_run_pipeline,
|
220 |
+
args=(result_queue, num_turns, num_rows, system_prompt, token.token),
|
221 |
)
|
222 |
p.start()
|
223 |
p.join()
|
224 |
distiset = result_queue.get()
|
225 |
|
226 |
+
if dataset_name is not None:
|
227 |
gr.Info("Pushing dataset to Hugging Face Hub...")
|
228 |
+
repo_id = f"{orgs_selector}/{dataset_name}"
|
229 |
distiset.push_to_hub(
|
230 |
+
repo_id=repo_id,
|
231 |
+
private=private,
|
232 |
include_script=True,
|
233 |
+
token=token.token,
|
234 |
)
|
235 |
+
gr.Info(f"Dataset pushed to Hugging Face Hub: https://huggingface.co/{repo_id}")
|
236 |
else:
|
237 |
# If not pushing to hub, generate the dataset directly
|
238 |
distiset = distiset["default"]["train"]
|
239 |
+
if num_turns == 1:
|
240 |
outputs = distiset.to_pandas()[["instruction", "response"]]
|
241 |
else:
|
242 |
outputs = {"conversation_id": [], "role": [], "content": []}
|
|
|
248 |
outputs["content"].append(message["content"])
|
249 |
return pd.DataFrame(outputs)
|
250 |
|
|
|
|
|
251 |
|
252 |
with gr.Blocks(
|
253 |
title="⚗️ Distilabel Dataset Generator",
|
254 |
head="⚗️ Distilabel Dataset Generator",
|
255 |
) as demo:
|
256 |
+
with gr.Row(variant="panel"):
|
257 |
+
with gr.Column():
|
258 |
+
btn_login = get_login_button()
|
259 |
+
with gr.Column():
|
260 |
+
btn_duplicate = get_duplicate_button()
|
261 |
|
262 |
dataset_description = gr.Textbox(
|
263 |
label="Provide a description of the dataset",
|
264 |
+
value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
|
265 |
)
|
266 |
|
267 |
+
btn_generate_system_prompt = gr.Button(value="🧪 Generate Sytem Prompt")
|
|
|
|
|
268 |
|
269 |
+
system_prompt = gr.Textbox(
|
270 |
+
label="Provide or correct the system prompt", value=DEFAULT_SYSTEM_PROMPT
|
271 |
+
)
|
272 |
|
273 |
btn_generate_system_prompt.click(
|
274 |
+
fn=generate_system_prompt,
|
275 |
inputs=[dataset_description],
|
276 |
outputs=[system_prompt],
|
277 |
)
|
278 |
|
279 |
btn_generate_sample_dataset = gr.Button(
|
280 |
+
value="🧪 Generate Sample Dataset of 5 rows and a single turn",
|
281 |
)
|
282 |
|
283 |
+
table = gr.Dataframe(label="Generated Dataset", wrap=True, value=DEFAULT_DATASET)
|
284 |
|
285 |
btn_generate_sample_dataset.click(
|
286 |
+
fn=generate_dataset,
|
287 |
inputs=[system_prompt],
|
288 |
outputs=[table],
|
289 |
)
|
290 |
|
291 |
with gr.Row(variant="panel"):
|
292 |
+
num_turns = gr.Number(
|
293 |
+
value=1,
|
294 |
+
label="Number of turns in the conversation",
|
295 |
+
minimum=1,
|
296 |
+
info="Whether the dataset is for a single turn with 'instruction-response' columns or a multi-turn conversation with a 'conversation' column.",
|
297 |
+
)
|
298 |
+
num_rows = gr.Number(
|
299 |
+
value=100,
|
300 |
+
label="Number of rows in the dataset",
|
301 |
+
minimum=1,
|
302 |
+
info="The number of rows in the dataset. Note that you are able to generate several 1000 rows at once but that this will take time.",
|
303 |
+
)
|
304 |
+
private = gr.Checkbox(label="Private dataset", value=True, interactive=True)
|
305 |
|
306 |
+
with gr.Row(variant="panel"):
|
307 |
+
orgs_selector = gr.Dropdown(label="Organization")
|
308 |
+
dataset_name_push_to_hub = gr.Textbox(label="Dataset Name to push to Hub")
|
309 |
|
310 |
btn_generate_full_dataset = gr.Button(
|
311 |
value="⚗️ Generate Full Dataset", variant="primary"
|
312 |
)
|
313 |
|
314 |
btn_generate_full_dataset.click(
|
315 |
+
fn=generate_dataset,
|
316 |
+
inputs=[
|
317 |
+
system_prompt,
|
318 |
+
num_turns,
|
319 |
+
num_rows,
|
320 |
+
private,
|
321 |
+
orgs_selector,
|
322 |
+
dataset_name_push_to_hub,
|
323 |
+
],
|
324 |
)
|
325 |
|
326 |
+
demo.load(get_org_dropdown, outputs=[orgs_selector])
|
327 |
demo
|
src/distilabel_dataset_generator/utils.py
CHANGED
@@ -6,6 +6,7 @@ from gradio.oauth import (
|
|
6 |
OPENID_PROVIDER_URL,
|
7 |
get_space,
|
8 |
)
|
|
|
9 |
|
10 |
if (
|
11 |
all(
|
@@ -36,6 +37,32 @@ def get_login_button():
|
|
36 |
or get_space() is None
|
37 |
):
|
38 |
return gr.LoginButton(
|
39 |
-
value="Sign in with Hugging Face
|
40 |
size="lg",
|
41 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
OPENID_PROVIDER_URL,
|
7 |
get_space,
|
8 |
)
|
9 |
+
from huggingface_hub import whoami
|
10 |
|
11 |
if (
|
12 |
all(
|
|
|
37 |
or get_space() is None
|
38 |
):
|
39 |
return gr.LoginButton(
|
40 |
+
value="Sign in with Hugging Face to generate a dataset!",
|
41 |
size="lg",
|
42 |
)
|
43 |
+
|
44 |
+
|
45 |
+
def get_duplicate_button():
|
46 |
+
if get_space() is not None:
|
47 |
+
return gr.DuplicateButton(size="lg")
|
48 |
+
|
49 |
+
|
50 |
+
def list_orgs(token: OAuthToken = None):
|
51 |
+
if token is not None:
|
52 |
+
data = whoami(token)
|
53 |
+
organisations = [
|
54 |
+
entry["entity"]["name"]
|
55 |
+
for entry in data["auth"]["accessToken"]["fineGrained"]["scoped"]
|
56 |
+
if "repo.write" in entry["permissions"]
|
57 |
+
]
|
58 |
+
print(organisations)
|
59 |
+
return organisations
|
60 |
+
else:
|
61 |
+
return []
|
62 |
+
|
63 |
+
|
64 |
+
def get_org_dropdown(token: OAuthToken = None):
|
65 |
+
orgs = list_orgs(token)
|
66 |
+
return gr.Dropdown(
|
67 |
+
label="Organization", choices=orgs, value=orgs[0] if orgs else None
|
68 |
+
)
|