File size: 17,475 Bytes
2b4b309
2723bd3
2b4b309
90e8636
e4b6cc5
6fc91c7
90e8636
 
f7b33f1
90e8636
8571d5a
2b4b309
90e8636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1fdeee
6fc91c7
 
 
 
 
 
 
 
 
 
 
 
 
 
90e8636
 
6fc91c7
e36d40b
 
 
 
90e8636
f7b33f1
90e8636
 
 
 
 
 
6fc91c7
f7b33f1
40e000b
 
 
 
 
 
 
90e8636
6fc91c7
90e8636
6fc91c7
 
 
f7b33f1
 
 
 
90e8636
f7b33f1
e36d40b
2b4b309
 
 
8571d5a
2723bd3
e1fdeee
 
 
 
 
 
 
 
 
 
 
 
2723bd3
e1fdeee
2723bd3
 
2b4b309
 
 
 
6fc91c7
2b4b309
 
 
 
2723bd3
 
 
 
 
 
 
 
 
2b4b309
 
6fc91c7
 
 
 
 
2eb6d1a
 
2723bd3
2b4b309
2eb6d1a
 
6fc91c7
8571d5a
 
 
6fc91c7
8571d5a
6fc91c7
8571d5a
e36d40b
 
 
 
 
 
 
 
 
 
6fc91c7
4d1c962
 
 
 
 
 
 
 
 
f7b33f1
2723bd3
4d1c962
f7b33f1
2b4b309
 
0c58a58
ff44e29
2b4b309
8571d5a
4d1c962
 
2723bd3
 
 
 
8571d5a
 
 
 
2723bd3
4d1c962
 
 
8571d5a
2b4b309
 
2eb6d1a
2723bd3
2b4b309
6fc91c7
 
40e000b
2eb6d1a
2b4b309
f7b33f1
 
 
8571d5a
2723bd3
 
 
 
e4b6cc5
2723bd3
 
 
 
2b4b309
90e8636
9d1a2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90e8636
e4b6cc5
 
318e969
2723bd3
c7f7750
75f9ac3
 
 
c7f7750
 
8571d5a
c7f7750
90e8636
c7f7750
 
75f9ac3
 
90e8636
c7f7750
 
 
 
 
 
2723bd3
8571d5a
 
 
 
 
 
90e8636
2eb6d1a
c0c68e7
 
 
2723bd3
c0c68e7
2723bd3
c0c68e7
 
2723bd3
c0c68e7
 
75f9ac3
2723bd3
75f9ac3
 
2723bd3
75f9ac3
8571d5a
 
2eb6d1a
8571d5a
 
 
9d1a2d6
 
75f9ac3
 
 
 
 
8571d5a
e36d40b
8571d5a
 
40e000b
75f9ac3
 
 
 
 
 
40e000b
75f9ac3
 
8571d5a
2eb6d1a
 
75f9ac3
 
 
 
 
9d1a2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import multiprocessing
import time

import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from distilabel.llms import InferenceEndpointsLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
from huggingface_hub import whoami

INFORMATION_SEEKING_PROMPT = (
    "You are an AI assistant designed to provide accurate and concise information on a wide"
    " range of topics. Your purpose is to assist users in finding specific facts,"
    " explanations, or details about various subjects. Provide clear, factual responses and,"
    " when appropriate, offer additional context or related information that might be useful"
    " to the user."
)

REASONING_PROMPT = (
    "You are an AI assistant specialized in logical thinking and problem-solving. Your"
    " purpose is to help users work through complex ideas, analyze situations, and draw"
    " conclusions based on given information. Approach each query with structured thinking,"
    " break down problems into manageable parts, and guide users through the reasoning"
    " process step-by-step."
)

PLANNING_PROMPT = (
    "You are an AI assistant focused on helping users create effective plans and strategies."
    " Your purpose is to assist in organizing thoughts, setting goals, and developing"
    " actionable steps for various projects or activities. Offer structured approaches,"
    " consider potential challenges, and provide tips for efficient execution of plans."
)

EDITING_PROMPT = (
    "You are an AI assistant specialized in editing and improving written content. Your"
    " purpose is to help users refine their writing by offering suggestions for grammar,"
    " style, clarity, and overall structure. Provide constructive feedback, explain your"
    " edits, and offer alternative phrasings when appropriate."
)

CODING_DEBUGGING_PROMPT = (
    "You are an AI assistant designed to help with programming tasks. Your purpose is to"
    " assist users in writing, reviewing, and debugging code across various programming"
    " languages. Provide clear explanations, offer best practices, and help troubleshoot"
    " issues. When appropriate, suggest optimizations or alternative approaches to coding"
    " problems."
)

MATH_SYSTEM_PROMPT = (
    "You are an AI assistant designed to provide helpful, step-by-step guidance on solving"
    " math problems. The user will ask you a wide range of complex mathematical questions."
    " Your purpose is to assist users in understanding mathematical concepts, working through"
    " equations, and arriving at the correct solutions."
)

ROLE_PLAYING_PROMPT = (
    "You are an AI assistant capable of engaging in various role-playing scenarios. Your"
    " purpose is to adopt different personas or characters as requested by the user. Maintain"
    " consistency with the chosen role, respond in character, and help create immersive and"
    " interactive experiences for the user."
)

DATA_ANALYSIS_PROMPT = (
    "You are an AI assistant specialized in data analysis and interpretation. Your purpose is"
    " to help users understand and derive insights from data sets, statistics, and analytical"
    " tasks. Offer clear explanations of data trends, assist with statistical calculations,"
    " and provide guidance on data visualization and interpretation techniques."
)

CREATIVE_WRITING_PROMPT = (
    "You are an AI assistant designed to support creative writing endeavors. Your purpose is"
    " to help users craft engaging stories, poems, and other creative texts. Offer"
    " suggestions for plot development, character creation, dialogue writing, and other"
    " aspects of creative composition. Provide constructive feedback and inspire creativity."
)

ADVICE_SEEKING_PROMPT = (
    "You are an AI assistant focused on providing thoughtful advice and guidance. Your"
    " purpose is to help users navigate various personal or professional issues by offering"
    " balanced perspectives, considering potential outcomes, and suggesting practical"
    " solutions. Encourage users to think critically about their situations while providing"
    " supportive and constructive advice."
)

BRAINSTORMING_PROMPT = (
    "You are an AI assistant specialized in generating ideas and facilitating creative"
    " thinking. Your purpose is to help users explore possibilities, think outside the box,"
    " and develop innovative concepts. Encourage free-flowing thoughts, offer diverse"
    " perspectives, and help users build upon and refine their ideas."
)

PROMPT_CREATION_PROMPT = f"""You are an AI assistant specialized in generating very precise prompts for dataset creation.
Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
The prompt you write should follow the same style and structure as the following example prompts:

{INFORMATION_SEEKING_PROMPT}

{REASONING_PROMPT}

{PLANNING_PROMPT}

{CODING_DEBUGGING_PROMPT}

{EDITING_PROMPT}

{ROLE_PLAYING_PROMPT}

{DATA_ANALYSIS_PROMPT}

{CREATIVE_WRITING_PROMPT}

{ADVICE_SEEKING_PROMPT}

{BRAINSTORMING_PROMPT}

User dataset description:
"""

MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
DEFAULT_SYSTEM_PROMPT_DESCRIPTION = (
    "A chemistry dataset for an assistant that explains chemical reactions and formulas"
)
DEFAULT_SYSTEM_PROMPT = "You are an AI assistant specializing in chemistry and chemical reactions. Your purpose is to help users understand and work with chemical formulas, equations, and reactions. Provide clear explanations of reaction mechanisms, assist in balancing chemical equations, and offer guidance on the interpretation of chemical structures. Explain the roles of reactants, products, catalysts, and solvents, and define key chemistry terms when necessary."
DEFAULT_DATASET = pd.DataFrame(
    {
        "instruction": [
            "What is the term for the study of the structure and evolution of the Earth's interior.	"
        ],
        "response": [
            """The study of the structure and evolution of the Earth's interior is called geophysics, particularly the subfield of geology known as geodynamics, and more specifically the subfield of geology known as geotectonics. However, a more specific term for this study is "geology of the Earth's interior" or "Earth internal structure." However, the most commonly used term for this study is geophysics.	"""
        ],
    }
)


def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
    if num_turns == 1:
        output_mappings = {"instruction": "prompt", "response": "completion"}
    else:
        output_mappings = {"conversation": "messages"}
    with Pipeline(name="sft") as pipeline:
        magpie = MagpieGenerator(
            llm=InferenceEndpointsLLM(
                model_id=MODEL,
                tokenizer_id=MODEL,
                magpie_pre_query_template="llama3",
                generation_kwargs={
                    "temperature": 0.8,  # it's the best value for Llama 3.1 70B Instruct
                    "do_sample": True,
                    "max_new_tokens": 2048,
                    "stop_sequences": [
                        "<|eot_id|>",
                        "<|end_of_text|>",
                        "<|start_header_id|>",
                        "<|end_header_id|>",
                        "assistant",
                    ],
                },
                api_key=token,
            ),
            n_turns=num_turns,
            num_rows=num_rows,
            system_prompt=system_prompt,
            output_mappings=output_mappings,
        )
        keep_columns = KeepColumns(
            columns=list(output_mappings.values()) + ["model_name"],
        )
        magpie.connect(keep_columns)
    distiset: Distiset = pipeline.run(use_cache=False)
    result_queue.put(distiset)


def generate_system_prompt(dataset_description, progress=gr.Progress()):
    progress(0.1, desc="Initializing text generation")
    generate_description = TextGeneration(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            generation_kwargs={
                "temperature": 0.8,
                "max_new_tokens": 2048,
                "do_sample": True,
            },
        ),
        use_system_prompt=True,
    )
    progress(0.4, desc="Loading model")
    generate_description.load()
    progress(0.7, desc="Generating system prompt")
    result = next(
        generate_description.process(
            [
                {
                    "system_prompt": PROMPT_CREATION_PROMPT,
                    "instruction": dataset_description,
                }
            ]
        )
    )[0]["generation"]
    progress(1.0, desc="System prompt generated")
    return result


def generate_sample_dataset(system_prompt, progress=gr.Progress()):
    progress(0.1, desc="Initializing sample dataset generation")
    result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
    progress(1.0, desc="Sample dataset generated")
    return result


def generate_dataset(
    system_prompt,
    num_turns=1,
    num_rows=5,
    private=True,
    repo_id=None,
    token=None,
    progress=gr.Progress(),
):
    if repo_id is not None:
        if not repo_id:
            raise gr.Error("Please provide a dataset name to push the dataset to.")
        try:
            whoami(token=token)
        except Exception:
            raise gr.Error(
                "Provide a Hugging Face to be able to push the dataset to the Hub."
            )

    if num_turns > 4:
        raise gr.Info(
            "You can only generate a dataset with 4 or fewer turns. Setting to 4."
        )
        num_turns = 4
    if num_rows > 5000:
        raise gr.Info(
            "You can only generate a dataset with 5000 or fewer rows. Setting to 5000."
        )
        num_rows = 5000

    if num_rows < 50:
        duration = 60
    elif num_rows < 250:
        duration = 300
    elif num_rows < 1000:
        duration = 500
    else:
        duration = 1000

    gr.Info(
        "Dataset generation started. This might take a while. Don't close the page.",
        duration=duration,
    )
    result_queue = multiprocessing.Queue()
    p = multiprocessing.Process(
        target=_run_pipeline,
        args=(result_queue, num_turns, num_rows, system_prompt),
    )

    try:
        p.start()
        total_steps = 100
        for step in range(total_steps):
            if not p.is_alive():
                break
            progress(
                (step + 1) / total_steps,
                desc=f"Generating dataset with {num_rows} rows",
            )
            time.sleep(0.5)  # Adjust this value based on your needs
        p.join()
    except Exception as e:
        raise gr.Error(f"An error occurred during dataset generation: {str(e)}")

    distiset = result_queue.get()

    if repo_id is not None:
        progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
        distiset.push_to_hub(
            repo_id=repo_id,
            private=private,
            include_script=False,
            token=token,
        )
        gr.Info(
            f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
        )

    # If not pushing to hub generate the dataset directly
    distiset = distiset["default"]["train"]
    if num_turns == 1:
        outputs = distiset.to_pandas()[["prompt", "completion"]]
    else:
        outputs = distiset.to_pandas()[["messages"]]

    progress(1.0, desc="Dataset generation completed")
    return pd.DataFrame(outputs)


def generate_pipeline_code(system_prompt):
    code = f"""
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator
from distilabel.llms import InferenceEndpointsLLM

MODEL = "{MODEL}"
SYSTEM_PROMPT = "{system_prompt}"

with Pipeline(name="sft") as pipeline:
    magpie = MagpieGenerator(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            magpie_pre_query_template="llama3",
            generation_kwargs={{
                "temperature": 0.8,
                "do_sample": True,
                "max_new_tokens": 2048,
                "stop_sequences": [
                    "<|eot_id|>",
                    "<|end_of_text|>",
                    "<|start_header_id|>",
                    "<|end_header_id|>",
                    "assistant",
                ],
            }}
        ),
        n_turns=1,
        num_rows=100,
        system_prompt=SYSTEM_PROMPT,
    )

if __name__ == "__main__":
    distiset = pipeline.run()
"""
    return code

def update_pipeline_code(system_prompt):
    return generate_pipeline_code(system_prompt)

with gr.Blocks(
    title="⚗️ Distilabel Dataset Generator",
    head="⚗️ Distilabel Dataset Generator",
) as app:
    gr.Markdown("## Iterate on a sample dataset")
    dataset_description = gr.TextArea(
        label="Provide a description of the dataset",
        value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
    )
    with gr.Row():
        gr.Column(scale=1)
        btn_generate_system_prompt = gr.Button(value="Generate sample dataset")
        gr.Column(scale=1)

    system_prompt = gr.TextArea(
        label="If you want to improve the dataset, you can tune the system prompt and regenerate the sample",
        value=DEFAULT_SYSTEM_PROMPT,
    )

    with gr.Row():
        gr.Column(scale=1)
        btn_generate_sample_dataset = gr.Button(
            value="Regenerate sample dataset",
        )
        gr.Column(scale=1)

    with gr.Row():
        table = gr.DataFrame(
            value=DEFAULT_DATASET,
            interactive=False,
            wrap=True,
        )

    result = btn_generate_system_prompt.click(
        fn=generate_system_prompt,
        inputs=[dataset_description],
        outputs=[system_prompt],
        show_progress=True,
    ).then(
        fn=generate_sample_dataset,
        inputs=[system_prompt],
        outputs=[table],
        show_progress=True,
    )

    btn_generate_sample_dataset.click(
        fn=generate_sample_dataset,
        inputs=[system_prompt],
        outputs=[table],
        show_progress=True,
    )

    # Add a header for the full dataset generation section
    gr.Markdown("## Generate full dataset")
    gr.Markdown(
        "Once you're satisfied with the sample, generate a larger dataset and push it to the hub. Get <a href='https://huggingface.co/settings/tokens' target='_blank'>a Hugging Face token</a> with write access to the organization you want to push the dataset to."
    )


    with gr.Column() as push_to_hub_ui:
        with gr.Row(variant="panel"):
            num_turns = gr.Number(
                value=1,
                label="Number of turns in the conversation",
                minimum=1,
                maximum=4,
                step=1,
                info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'conversation' column).",
            )
            num_rows = gr.Number(
                value=100,
                label="Number of rows in the dataset",
                minimum=1,
                maximum=5000,
                info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
            )

        with gr.Row(variant="panel"):
            hf_token = gr.Textbox(label="HF token", type="password")
            repo_id = gr.Textbox(label="HF repo ID", placeholder="owner/dataset_name")
            private = gr.Checkbox(label="Private dataset", value=True, interactive=True)

        btn_generate_full_dataset = gr.Button(
            value="⚗️ Generate Full Dataset", variant="primary"
        )

        # Add this line here, before the button click event
        success_message = gr.Markdown(visible=False)

    def show_success_message(repo_id_value):
        return gr.update(value=f"""
            <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
                <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
                <p style="margin-top: 0.5em;">
                    Your dataset is now available at: 
                    <a href="https://huggingface.co/datasets/{repo_id_value}" target="_blank" style="color: #1565c0; text-decoration: none;">
                        https://huggingface.co/datasets/{repo_id_value}
                    </a>
                </p>
            </div>
        """, visible=True)

    btn_generate_full_dataset.click(
        fn=generate_dataset,
        inputs=[system_prompt, num_turns, num_rows, private, repo_id, hf_token],
        outputs=[table],
        show_progress=True,
    ).then(
        fn=show_success_message,
        inputs=[repo_id],
        outputs=[success_message]
    )

    gr.Markdown("## Or run this pipeline locally with distilabel")
     
    with gr.Accordion("Run this pipeline on Distilabel", open=False):
        pipeline_code = gr.Code(language="python", label="Distilabel Pipeline Code")

    system_prompt.change(
        fn=update_pipeline_code,
        inputs=[system_prompt],
        outputs=[pipeline_code],
    )