File size: 10,019 Bytes
2b4b309 2723bd3 2b4b309 90e8636 e4b6cc5 6fc91c7 8571d5a 2b4b309 f04dfa8 6fc91c7 90e8636 f04dfa8 e36d40b 2b4b309 8571d5a 2723bd3 f04dfa8 2723bd3 e1fdeee 2723bd3 2b4b309 6fc91c7 2b4b309 2723bd3 2b4b309 6fc91c7 2eb6d1a 2723bd3 2b4b309 2eb6d1a 6fc91c7 8571d5a 6fc91c7 8571d5a 6fc91c7 8571d5a e36d40b f04dfa8 e36d40b f04dfa8 e36d40b 6fc91c7 4d1c962 f7b33f1 2723bd3 4d1c962 f7b33f1 2b4b309 0c58a58 ff44e29 2b4b309 8571d5a 4d1c962 2723bd3 f04dfa8 2723bd3 8571d5a 2723bd3 4d1c962 8571d5a 2b4b309 2eb6d1a 2723bd3 2b4b309 6fc91c7 40e000b 2eb6d1a 2b4b309 f7b33f1 8571d5a 2723bd3 e4b6cc5 2723bd3 2b4b309 90e8636 9d1a2d6 48d2515 9d1a2d6 48d2515 9d1a2d6 f04dfa8 9d1a2d6 f04dfa8 90e8636 e4b6cc5 318e969 2723bd3 c7f7750 75f9ac3 f04dfa8 75f9ac3 c7f7750 8571d5a c7f7750 90e8636 c7f7750 75f9ac3 90e8636 c7f7750 2723bd3 8571d5a 90e8636 2eb6d1a c0c68e7 2723bd3 c0c68e7 2723bd3 c0c68e7 2723bd3 c0c68e7 75f9ac3 2723bd3 75f9ac3 2723bd3 75f9ac3 8571d5a 2eb6d1a 8571d5a 9d1a2d6 75f9ac3 8571d5a e36d40b 8571d5a 40e000b 75f9ac3 40e000b 75f9ac3 8571d5a 2eb6d1a 75f9ac3 9d1a2d6 f04dfa8 9d1a2d6 f04dfa8 9d1a2d6 f04dfa8 9d1a2d6 f04dfa8 9d1a2d6 f04dfa8 9d1a2d6 f04dfa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import multiprocessing
import time
import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from huggingface_hub import whoami
from src.distilabel_dataset_generator.pipelines.sft import (
DEFAULT_DATASET,
DEFAULT_DATASET_DESCRIPTION,
DEFAULT_SYSTEM_PROMPT,
MODEL,
PROMPT_CREATION_PROMPT,
get_pipeline,
get_prompt_generation_step,
)
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt):
pipeline = get_pipeline(
num_turns,
num_rows,
system_prompt,
)
distiset: Distiset = pipeline.run(use_cache=False)
result_queue.put(distiset)
def generate_system_prompt(dataset_description, progress=gr.Progress()):
progress(0.1, desc="Initializing text generation")
generate_description = get_prompt_generation_step()
progress(0.4, desc="Loading model")
generate_description.load()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing sample dataset generation")
result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
progress(1.0, desc="Sample dataset generated")
return result
def generate_dataset(
system_prompt,
num_turns=1,
num_rows=5,
private=True,
repo_id=None,
token=None,
progress=gr.Progress(),
):
if repo_id is not None:
if not repo_id:
raise gr.Error("Please provide a dataset name to push the dataset to.")
try:
whoami(token=token)
except Exception:
raise gr.Error(
"Provide a Hugging Face to be able to push the dataset to the Hub."
)
if num_turns > 4:
num_turns = 4
gr.Info("You can only generate a dataset with 4 or fewer turns. Setting to 4.")
if num_rows > 5000:
num_rows = 5000
gr.Info(
"You can only generate a dataset with 5000 or fewer rows. Setting to 5000."
)
if num_rows < 50:
duration = 60
elif num_rows < 250:
duration = 300
elif num_rows < 1000:
duration = 500
else:
duration = 1000
gr.Info(
"Dataset generation started. This might take a while. Don't close the page.",
duration=duration,
)
result_queue = multiprocessing.Queue()
p = multiprocessing.Process(
target=_run_pipeline,
args=(result_queue, num_turns, num_rows, system_prompt),
)
try:
p.start()
total_steps = 100
for step in range(total_steps):
if not p.is_alive() or p._popen.poll() is not None:
break
progress(
(step + 1) / total_steps,
desc=f"Generating dataset with {num_rows} rows",
)
time.sleep(0.5) # Adjust this value based on your needs
p.join()
except Exception as e:
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
distiset = result_queue.get()
if repo_id is not None:
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=token,
)
gr.Info(
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]["train"]
if num_turns == 1:
outputs = distiset.to_pandas()[["prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
progress(1.0, desc="Dataset generation completed")
return pd.DataFrame(outputs)
def generate_pipeline_code(system_prompt):
code = f"""
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator
from distilabel.llms import InferenceEndpointsLLM
MODEL = "{MODEL}"
SYSTEM_PROMPT = "{system_prompt}"
# increase this to generate multi-turn conversations
NUM_TURNS = 1
# increase this to generate a larger dataset
NUM_ROWS = 100
with Pipeline(name="sft") as pipeline:
magpie = MagpieGenerator(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
magpie_pre_query_template="llama3",
generation_kwargs={{
"temperature": 0.8,
"do_sample": True,
"max_new_tokens": 2048,
"stop_sequences": [
"<|eot_id|>",
"<|end_of_text|>",
"<|start_header_id|>",
"<|end_header_id|>",
"assistant",
],
}}
),
n_turns=NUM_TURNS,
num_rows=NUM_ROWS,
system_prompt=SYSTEM_PROMPT,
)
if __name__ == "__main__":
distiset = pipeline.run()
"""
return code
def update_pipeline_code(system_prompt):
return generate_pipeline_code(system_prompt)
with gr.Blocks(
title="⚗️ Distilabel Dataset Generator",
head="⚗️ Distilabel Dataset Generator",
) as app:
gr.Markdown("## Iterate on a sample dataset")
dataset_description = gr.TextArea(
label="Provide a description of the dataset",
value=DEFAULT_DATASET_DESCRIPTION,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(value="Generate sample dataset")
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="If you want to improve the dataset, you can tune the system prompt and regenerate the sample",
value=DEFAULT_SYSTEM_PROMPT,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Regenerate sample dataset",
)
gr.Column(scale=1)
with gr.Row():
table = gr.DataFrame(
value=DEFAULT_DATASET,
interactive=False,
wrap=True,
)
result = btn_generate_system_prompt.click(
fn=generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
# Add a header for the full dataset generation section
gr.Markdown("## Generate full dataset")
gr.Markdown(
"Once you're satisfied with the sample, generate a larger dataset and push it to the hub. Get <a href='https://huggingface.co/settings/tokens' target='_blank'>a Hugging Face token</a> with write access to the organization you want to push the dataset to."
)
with gr.Column() as push_to_hub_ui:
with gr.Row(variant="panel"):
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'conversation' column).",
)
num_rows = gr.Number(
value=100,
label="Number of rows in the dataset",
minimum=1,
maximum=5000,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
with gr.Row(variant="panel"):
hf_token = gr.Textbox(label="HF token", type="password")
repo_id = gr.Textbox(label="HF repo ID", placeholder="owner/dataset_name")
private = gr.Checkbox(label="Private dataset", value=True, interactive=True)
btn_generate_full_dataset = gr.Button(
value="⚗️ Generate Full Dataset", variant="primary"
)
# Add this line here, before the button click event
success_message = gr.Markdown(visible=False)
def show_success_message(repo_id_value):
return gr.update(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
Your dataset is now available at:
<a href="https://huggingface.co/datasets/{repo_id_value}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{repo_id_value}
</a>
</p>
</div>
""",
visible=True,
)
btn_generate_full_dataset.click(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows, private, repo_id, hf_token],
outputs=[table],
show_progress=True,
).then(fn=show_success_message, inputs=[repo_id], outputs=[success_message])
gr.Markdown("## Or run this pipeline locally with distilabel")
with gr.Accordion("Run this pipeline on Distilabel", open=False):
pipeline_code = gr.Code(language="python", label="Distilabel Pipeline Code")
system_prompt.change(
fn=update_pipeline_code,
inputs=[system_prompt],
outputs=[pipeline_code],
)
|