File size: 10,019 Bytes
2b4b309
2723bd3
2b4b309
90e8636
e4b6cc5
6fc91c7
8571d5a
2b4b309
f04dfa8
 
 
 
 
 
 
 
6fc91c7
90e8636
 
f04dfa8
 
 
 
 
 
e36d40b
2b4b309
 
 
8571d5a
2723bd3
f04dfa8
2723bd3
e1fdeee
2723bd3
 
2b4b309
 
 
 
6fc91c7
2b4b309
 
 
 
2723bd3
 
 
 
 
 
 
 
 
2b4b309
 
6fc91c7
 
 
 
 
2eb6d1a
 
2723bd3
2b4b309
2eb6d1a
 
6fc91c7
8571d5a
 
 
6fc91c7
8571d5a
6fc91c7
8571d5a
e36d40b
 
f04dfa8
e36d40b
f04dfa8
 
e36d40b
 
6fc91c7
4d1c962
 
 
 
 
 
 
 
 
f7b33f1
2723bd3
4d1c962
f7b33f1
2b4b309
 
0c58a58
ff44e29
2b4b309
8571d5a
4d1c962
 
2723bd3
 
f04dfa8
2723bd3
8571d5a
 
 
 
2723bd3
4d1c962
 
 
8571d5a
2b4b309
 
2eb6d1a
2723bd3
2b4b309
6fc91c7
 
40e000b
2eb6d1a
2b4b309
f7b33f1
 
 
8571d5a
2723bd3
 
 
 
e4b6cc5
2723bd3
 
 
 
2b4b309
90e8636
9d1a2d6
 
 
 
 
 
 
 
 
48d2515
 
 
 
9d1a2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d2515
 
9d1a2d6
 
 
 
 
 
 
 
f04dfa8
9d1a2d6
 
 
f04dfa8
90e8636
e4b6cc5
 
318e969
2723bd3
c7f7750
75f9ac3
f04dfa8
75f9ac3
c7f7750
 
8571d5a
c7f7750
90e8636
c7f7750
 
75f9ac3
 
90e8636
c7f7750
 
 
 
 
 
2723bd3
8571d5a
 
 
 
 
 
90e8636
2eb6d1a
c0c68e7
 
 
2723bd3
c0c68e7
2723bd3
c0c68e7
 
2723bd3
c0c68e7
 
75f9ac3
2723bd3
75f9ac3
 
2723bd3
75f9ac3
8571d5a
 
2eb6d1a
8571d5a
 
 
9d1a2d6
75f9ac3
 
 
 
 
8571d5a
e36d40b
8571d5a
 
40e000b
75f9ac3
 
 
 
 
 
40e000b
75f9ac3
 
8571d5a
2eb6d1a
 
75f9ac3
 
 
 
 
9d1a2d6
 
 
 
f04dfa8
 
9d1a2d6
 
 
f04dfa8
9d1a2d6
 
 
 
 
f04dfa8
 
 
9d1a2d6
 
 
 
 
 
f04dfa8
9d1a2d6
 
f04dfa8
9d1a2d6
 
 
 
 
 
 
f04dfa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import multiprocessing
import time

import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from huggingface_hub import whoami

from src.distilabel_dataset_generator.pipelines.sft import (
    DEFAULT_DATASET,
    DEFAULT_DATASET_DESCRIPTION,
    DEFAULT_SYSTEM_PROMPT,
    MODEL,
    PROMPT_CREATION_PROMPT,
    get_pipeline,
    get_prompt_generation_step,
)


def _run_pipeline(result_queue, num_turns, num_rows, system_prompt):
    pipeline = get_pipeline(
        num_turns,
        num_rows,
        system_prompt,
    )
    distiset: Distiset = pipeline.run(use_cache=False)
    result_queue.put(distiset)


def generate_system_prompt(dataset_description, progress=gr.Progress()):
    progress(0.1, desc="Initializing text generation")
    generate_description = get_prompt_generation_step()
    progress(0.4, desc="Loading model")
    generate_description.load()
    progress(0.7, desc="Generating system prompt")
    result = next(
        generate_description.process(
            [
                {
                    "system_prompt": PROMPT_CREATION_PROMPT,
                    "instruction": dataset_description,
                }
            ]
        )
    )[0]["generation"]
    progress(1.0, desc="System prompt generated")
    return result


def generate_sample_dataset(system_prompt, progress=gr.Progress()):
    progress(0.1, desc="Initializing sample dataset generation")
    result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
    progress(1.0, desc="Sample dataset generated")
    return result


def generate_dataset(
    system_prompt,
    num_turns=1,
    num_rows=5,
    private=True,
    repo_id=None,
    token=None,
    progress=gr.Progress(),
):
    if repo_id is not None:
        if not repo_id:
            raise gr.Error("Please provide a dataset name to push the dataset to.")
        try:
            whoami(token=token)
        except Exception:
            raise gr.Error(
                "Provide a Hugging Face to be able to push the dataset to the Hub."
            )

    if num_turns > 4:
        num_turns = 4
        gr.Info("You can only generate a dataset with 4 or fewer turns. Setting to 4.")
    if num_rows > 5000:
        num_rows = 5000
        gr.Info(
            "You can only generate a dataset with 5000 or fewer rows. Setting to 5000."
        )

    if num_rows < 50:
        duration = 60
    elif num_rows < 250:
        duration = 300
    elif num_rows < 1000:
        duration = 500
    else:
        duration = 1000

    gr.Info(
        "Dataset generation started. This might take a while. Don't close the page.",
        duration=duration,
    )
    result_queue = multiprocessing.Queue()
    p = multiprocessing.Process(
        target=_run_pipeline,
        args=(result_queue, num_turns, num_rows, system_prompt),
    )

    try:
        p.start()
        total_steps = 100
        for step in range(total_steps):
            if not p.is_alive() or p._popen.poll() is not None:
                break
            progress(
                (step + 1) / total_steps,
                desc=f"Generating dataset with {num_rows} rows",
            )
            time.sleep(0.5)  # Adjust this value based on your needs
        p.join()
    except Exception as e:
        raise gr.Error(f"An error occurred during dataset generation: {str(e)}")

    distiset = result_queue.get()

    if repo_id is not None:
        progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
        distiset.push_to_hub(
            repo_id=repo_id,
            private=private,
            include_script=False,
            token=token,
        )
        gr.Info(
            f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
        )

    # If not pushing to hub generate the dataset directly
    distiset = distiset["default"]["train"]
    if num_turns == 1:
        outputs = distiset.to_pandas()[["prompt", "completion"]]
    else:
        outputs = distiset.to_pandas()[["messages"]]

    progress(1.0, desc="Dataset generation completed")
    return pd.DataFrame(outputs)


def generate_pipeline_code(system_prompt):
    code = f"""
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator
from distilabel.llms import InferenceEndpointsLLM

MODEL = "{MODEL}"
SYSTEM_PROMPT = "{system_prompt}"
# increase this to generate multi-turn conversations
NUM_TURNS = 1
# increase this to generate a larger dataset
NUM_ROWS = 100

with Pipeline(name="sft") as pipeline:
    magpie = MagpieGenerator(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            magpie_pre_query_template="llama3",
            generation_kwargs={{
                "temperature": 0.8,
                "do_sample": True,
                "max_new_tokens": 2048,
                "stop_sequences": [
                    "<|eot_id|>",
                    "<|end_of_text|>",
                    "<|start_header_id|>",
                    "<|end_header_id|>",
                    "assistant",
                ],
            }}
        ),
        n_turns=NUM_TURNS,
        num_rows=NUM_ROWS,
        system_prompt=SYSTEM_PROMPT,
    )

if __name__ == "__main__":
    distiset = pipeline.run()
"""
    return code


def update_pipeline_code(system_prompt):
    return generate_pipeline_code(system_prompt)


with gr.Blocks(
    title="⚗️ Distilabel Dataset Generator",
    head="⚗️ Distilabel Dataset Generator",
) as app:
    gr.Markdown("## Iterate on a sample dataset")
    dataset_description = gr.TextArea(
        label="Provide a description of the dataset",
        value=DEFAULT_DATASET_DESCRIPTION,
    )
    with gr.Row():
        gr.Column(scale=1)
        btn_generate_system_prompt = gr.Button(value="Generate sample dataset")
        gr.Column(scale=1)

    system_prompt = gr.TextArea(
        label="If you want to improve the dataset, you can tune the system prompt and regenerate the sample",
        value=DEFAULT_SYSTEM_PROMPT,
    )

    with gr.Row():
        gr.Column(scale=1)
        btn_generate_sample_dataset = gr.Button(
            value="Regenerate sample dataset",
        )
        gr.Column(scale=1)

    with gr.Row():
        table = gr.DataFrame(
            value=DEFAULT_DATASET,
            interactive=False,
            wrap=True,
        )

    result = btn_generate_system_prompt.click(
        fn=generate_system_prompt,
        inputs=[dataset_description],
        outputs=[system_prompt],
        show_progress=True,
    ).then(
        fn=generate_sample_dataset,
        inputs=[system_prompt],
        outputs=[table],
        show_progress=True,
    )

    btn_generate_sample_dataset.click(
        fn=generate_sample_dataset,
        inputs=[system_prompt],
        outputs=[table],
        show_progress=True,
    )

    # Add a header for the full dataset generation section
    gr.Markdown("## Generate full dataset")
    gr.Markdown(
        "Once you're satisfied with the sample, generate a larger dataset and push it to the hub. Get <a href='https://huggingface.co/settings/tokens' target='_blank'>a Hugging Face token</a> with write access to the organization you want to push the dataset to."
    )

    with gr.Column() as push_to_hub_ui:
        with gr.Row(variant="panel"):
            num_turns = gr.Number(
                value=1,
                label="Number of turns in the conversation",
                minimum=1,
                maximum=4,
                step=1,
                info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'conversation' column).",
            )
            num_rows = gr.Number(
                value=100,
                label="Number of rows in the dataset",
                minimum=1,
                maximum=5000,
                info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
            )

        with gr.Row(variant="panel"):
            hf_token = gr.Textbox(label="HF token", type="password")
            repo_id = gr.Textbox(label="HF repo ID", placeholder="owner/dataset_name")
            private = gr.Checkbox(label="Private dataset", value=True, interactive=True)

        btn_generate_full_dataset = gr.Button(
            value="⚗️ Generate Full Dataset", variant="primary"
        )

        # Add this line here, before the button click event
        success_message = gr.Markdown(visible=False)

    def show_success_message(repo_id_value):
        return gr.update(
            value=f"""
            <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
                <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
                <p style="margin-top: 0.5em;">
                    Your dataset is now available at:
                    <a href="https://huggingface.co/datasets/{repo_id_value}" target="_blank" style="color: #1565c0; text-decoration: none;">
                        https://huggingface.co/datasets/{repo_id_value}
                    </a>
                </p>
            </div>
        """,
            visible=True,
        )

    btn_generate_full_dataset.click(
        fn=generate_dataset,
        inputs=[system_prompt, num_turns, num_rows, private, repo_id, hf_token],
        outputs=[table],
        show_progress=True,
    ).then(fn=show_success_message, inputs=[repo_id], outputs=[success_message])

    gr.Markdown("## Or run this pipeline locally with distilabel")

    with gr.Accordion("Run this pipeline on Distilabel", open=False):
        pipeline_code = gr.Code(language="python", label="Distilabel Pipeline Code")

    system_prompt.change(
        fn=update_pipeline_code,
        inputs=[system_prompt],
        outputs=[pipeline_code],
    )