|
import subprocess |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT_1, |
|
EVALUATION_EXAMPLE_IMG, |
|
LLM_BENCHMARKS_TEXT_2, |
|
ENTITY_DISTRIBUTION_IMG, |
|
LLM_BENCHMARKS_TEXT_3, |
|
TITLE, |
|
LOGO |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
DATASET_BENCHMARK_COLS, |
|
TYPES_BENCHMARK_COLS, |
|
DATASET_COLS, |
|
Clinical_TYPES_COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
NUMERIC_INTERVALS, |
|
TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
ModelArch, |
|
PromptTemplateName, |
|
Precision, |
|
WeightType, |
|
fields, |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
try: |
|
print(EVAL_REQUESTS_PATH) |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
print(EVAL_RESULTS_PATH) |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
_, span_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "datasets") |
|
span_based_datasets_leaderboard_df = span_based_datasets_original_df.copy() |
|
|
|
_, span_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "clinical_types") |
|
span_based_types_leaderboard_df = span_based_types_original_df.copy() |
|
|
|
|
|
_, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets") |
|
token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy() |
|
|
|
_, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types") |
|
token_based_types_leaderboard_df = token_based_types_original_df.copy() |
|
|
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
def update_df(evaluation_metric, shown_columns, subset="datasets"): |
|
print(evaluation_metric) |
|
|
|
if subset == "datasets": |
|
match evaluation_metric: |
|
case "Span Based": |
|
leaderboard_table_df = span_based_datasets_leaderboard_df.copy() |
|
hidden_leader_board_df = span_based_datasets_original_df |
|
case "Token Based": |
|
leaderboard_table_df = token_based_datasets_leaderboard_df.copy() |
|
hidden_leader_board_df = token_based_datasets_original_df |
|
case _: |
|
pass |
|
else: |
|
match evaluation_metric: |
|
case "Span Based": |
|
leaderboard_table_df = span_based_types_leaderboard_df.copy() |
|
hidden_leader_board_df = span_based_types_original_df |
|
case "Token Based": |
|
leaderboard_table_df = token_based_types_leaderboard_df.copy() |
|
hidden_leader_board_df = token_based_types_original_df |
|
case _: |
|
pass |
|
|
|
|
|
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns |
|
|
|
return leaderboard_table_df[value_cols], hidden_leader_board_df |
|
|
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns: list, |
|
query: str, |
|
type_query: list = None, |
|
architecture_query: list = None, |
|
size_query: list = None, |
|
precision_query: str = None, |
|
show_deleted: bool = False, |
|
): |
|
filtered_df = filter_models(hidden_df, type_query, architecture_query, size_query, precision_query, show_deleted) |
|
filtered_df = filter_queries(query, filtered_df) |
|
df = select_columns(filtered_df, columns, list(hidden_df.columns)) |
|
return df |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame: |
|
always_here_cols = [ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
|
|
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]] |
|
return filtered_df |
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=[ |
|
AutoEvalColumn.model.name, |
|
|
|
|
|
] |
|
) |
|
|
|
return filtered_df |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, architecture_query: list, size_query: list, precision_query: list, show_deleted: bool |
|
) -> pd.DataFrame: |
|
|
|
|
|
|
|
|
|
|
|
|
|
filtered_df = df |
|
|
|
if type_query is not None: |
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
|
|
if architecture_query is not None: |
|
arch_types = [t for t in architecture_query] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)] |
|
|
|
|
|
if precision_query is not None: |
|
if AutoEvalColumn.precision.name in df.columns: |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
if size_query is not None: |
|
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
return filtered_df |
|
|
|
def change_submit_request_form(model_architecture): |
|
match model_architecture: |
|
case "Encoder": |
|
return ( |
|
gr.Textbox(label="Threshold for gliner models", visible=False), |
|
gr.Radio( |
|
choices=["True", "False"], |
|
label="Load GLiNER Tokenizer", |
|
visible=False |
|
), |
|
gr.Dropdown( |
|
choices=[prompt_template.value for prompt_template in PromptTemplateName], |
|
label="Prompt for generation", |
|
multiselect=False, |
|
|
|
interactive=True, |
|
visible=False |
|
) |
|
) |
|
case "Decoder": |
|
return ( |
|
gr.Textbox(label="Threshold for gliner models", visible=False), |
|
gr.Radio( |
|
choices=["True", "False"], |
|
label="Load GLiNER Tokenizer", |
|
visible=False |
|
), |
|
gr.Dropdown( |
|
choices=[prompt_template.value for prompt_template in PromptTemplateName], |
|
label="Prompt for generation", |
|
multiselect=False, |
|
|
|
interactive=True, |
|
visible=True |
|
) |
|
) |
|
case "GLiNER Encoder": |
|
return ( |
|
gr.Textbox(label="Threshold for gliner models", visible=True), |
|
gr.Radio( |
|
choices=["True", "False"], |
|
label="Load GLiNER Tokenizer", |
|
visible=True |
|
), |
|
gr.Dropdown( |
|
choices=[prompt_template.value for prompt_template in PromptTemplateName], |
|
label="Prompt for generation", |
|
multiselect=False, |
|
|
|
interactive=True, |
|
visible=False |
|
) |
|
) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(LOGO, elem_classes="logo") |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 NER Datasets", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.clinical_type_col], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.clinical_type_col |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
|
|
|
|
|
|
|
|
with gr.Column(min_width=320): |
|
|
|
|
|
eval_metric = gr.Radio( |
|
choices=["Span Based", "Token Based"], |
|
value = "Span Based", |
|
label="Evaluation Metric", |
|
) |
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model Types", |
|
choices=[t.to_str() for t in ModelType], |
|
value=[t.to_str() for t in ModelType], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_architecture = gr.CheckboxGroup( |
|
label="Architecture Types", |
|
choices=[i.value.name for i in ModelArch], |
|
value=[i.value.name for i in ModelArch], |
|
interactive=True, |
|
elem_id="filter-columns-architecture", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets_leaderboard_df, datasets_original_df = update_df(eval_metric.value, shown_columns.value, subset="datasets") |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value], |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=datasets_original_df[DATASET_COLS], |
|
headers=DATASET_COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
|
|
eval_metric.change( |
|
lambda a, b: update_df(a,b, "datasets") , |
|
inputs=[ |
|
eval_metric, |
|
shown_columns, |
|
], |
|
outputs=[ |
|
leaderboard_table, |
|
hidden_leaderboard_table_for_search, |
|
] |
|
) |
|
|
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
search_bar, |
|
filter_columns_type, |
|
filter_columns_architecture |
|
], |
|
leaderboard_table, |
|
) |
|
for selector in [ |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_architecture, |
|
|
|
|
|
]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
search_bar, |
|
filter_columns_type, |
|
filter_columns_architecture, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
|
|
with gr.TabItem("🏅 Clinical Types", elem_id="llm-benchmark-tab-table", id=4): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dataset_task_col], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.dataset_task_col |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
|
|
|
|
|
|
|
|
with gr.Column(min_width=320): |
|
|
|
eval_metric = gr.Radio( |
|
choices=["Span Based", "Token Based"], |
|
value = "Span Based", |
|
label="Evaluation Metric", |
|
) |
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model Types", |
|
choices=[t.to_str() for t in ModelType], |
|
value=[t.to_str() for t in ModelType], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_architecture = gr.CheckboxGroup( |
|
label="Architecture Types", |
|
choices=[i.value.name for i in ModelArch], |
|
value=[i.value.name for i in ModelArch], |
|
interactive=True, |
|
elem_id="filter-columns-architecture", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
types_leaderboard_df, types_original_df = update_df(eval_metric.value, shown_columns.value, subset="clinical_types") |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=types_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value], |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=types_original_df[Clinical_TYPES_COLS], |
|
headers=Clinical_TYPES_COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
|
|
eval_metric.change( |
|
fn=lambda a, b: update_df(a,b, "clinical_types"), |
|
inputs=[ |
|
eval_metric, |
|
shown_columns, |
|
], |
|
outputs=[ |
|
leaderboard_table, |
|
hidden_leaderboard_table_for_search |
|
] |
|
) |
|
|
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
search_bar, |
|
filter_columns_type, |
|
filter_columns_architecture, |
|
], |
|
leaderboard_table, |
|
) |
|
for selector in [ |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_architecture, |
|
|
|
|
|
|
|
]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
search_bar, |
|
filter_columns_type, |
|
filter_columns_architecture, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text") |
|
gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo") |
|
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text") |
|
gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo") |
|
gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
model_name_textbox = gr.Textbox(label="Model name") |
|
|
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
|
|
model_arch = gr.Radio( |
|
choices=[t.to_str(" : ") for t in ModelArch if t != ModelArch.Unknown], |
|
label="Model Architecture", |
|
) |
|
|
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
label_normalization_map = gr.Textbox(lines=6, label="Label Normalization Map", placeholder=PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG) |
|
gliner_threshold = gr.Textbox(label="Threshold for GLiNER models", visible=False) |
|
gliner_tokenizer_bool = gr.Radio( |
|
choices=["True", "False"], |
|
label="Load GLiNER Tokenizer", |
|
visible=False |
|
) |
|
prompt_name = gr.Dropdown( |
|
choices=[prompt_template.value for prompt_template in PromptTemplateName], |
|
label="Prompt for generation", |
|
multiselect=False, |
|
value="HTML Highlighted Spans", |
|
interactive=True, |
|
visible=False |
|
) |
|
|
|
|
|
|
|
|
|
model_arch.change(fn=change_submit_request_form, inputs=model_arch, outputs=[ |
|
gliner_threshold, |
|
gliner_tokenizer_bool, |
|
prompt_name]) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
|
|
revision_name_textbox, |
|
model_arch, |
|
label_normalization_map, |
|
gliner_threshold, |
|
gliner_tokenizer_bool, |
|
prompt_name, |
|
|
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("📙 Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/']) |
|
|