File size: 26,537 Bytes
c202d7d
cc05af6
c202d7d
 
 
 
 
 
 
 
 
 
54f77a5
 
 
 
 
c202d7d
eb6e73c
c202d7d
 
 
eb6e73c
 
 
300388f
c202d7d
 
 
 
 
 
4b57d62
215aa92
cc05af6
c202d7d
cc05af6
c202d7d
 
 
215aa92
c202d7d
 
 
 
 
cc05af6
3a8ab9c
 
 
 
 
 
 
 
 
 
 
 
 
 
c202d7d
f738aa2
 
 
c202d7d
f738aa2
 
 
 
 
 
 
 
 
eb6e73c
c202d7d
 
 
 
 
 
 
 
f738aa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c202d7d
 
 
 
 
cc05af6
4b57d62
cc05af6
4b57d62
cc05af6
c202d7d
4b57d62
c202d7d
eb6e73c
c202d7d
 
 
 
 
 
 
eb6e73c
c202d7d
 
 
 
 
eb6e73c
c202d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc05af6
 
 
 
 
c202d7d
 
 
 
 
 
4b57d62
c202d7d
 
cc05af6
 
 
 
 
 
c202d7d
cc05af6
 
 
c202d7d
4b57d62
 
 
 
 
cc05af6
 
 
 
 
 
 
 
 
c202d7d
 
 
215aa92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c202d7d
215aa92
c202d7d
 
 
eb6e73c
c202d7d
 
 
cc05af6
c202d7d
 
 
 
 
 
 
 
 
 
300388f
cc05af6
c202d7d
 
300388f
c202d7d
cc05af6
 
 
 
 
 
 
 
 
 
f738aa2
 
 
 
 
 
cc05af6
4b57d62
cc05af6
 
 
 
 
4b57d62
 
 
 
 
 
 
cc05af6
 
 
 
 
 
 
f738aa2
 
 
cc05af6
eb6e73c
cc05af6
 
 
 
 
 
 
 
 
eb6e73c
 
cc05af6
 
 
f738aa2
 
 
 
 
 
 
 
 
 
 
 
 
cc05af6
 
 
 
 
 
 
4b57d62
cc05af6
 
 
 
 
 
4b57d62
cc05af6
 
 
 
 
 
 
 
 
 
4b57d62
cc05af6
 
 
 
 
f738aa2
300388f
cc05af6
 
 
 
 
 
 
 
 
 
eb6e73c
c202d7d
 
 
eb6e73c
c202d7d
 
 
 
 
cc05af6
 
 
 
c202d7d
f738aa2
 
 
 
 
 
cc05af6
c202d7d
54f77a5
c202d7d
 
 
 
 
4b57d62
 
 
 
 
 
 
cc05af6
 
 
 
 
 
 
 
 
 
 
 
 
 
f738aa2
c202d7d
 
eb6e73c
c202d7d
 
 
 
 
 
 
 
 
300388f
 
c202d7d
 
 
f738aa2
 
 
 
 
 
 
 
 
 
 
 
 
c202d7d
 
 
 
 
 
cc05af6
4b57d62
c202d7d
 
 
cc05af6
 
 
4b57d62
cc05af6
 
 
 
c202d7d
 
 
 
 
 
cc05af6
4b57d62
c202d7d
 
 
 
 
 
54f77a5
 
 
 
 
c202d7d
 
 
 
 
 
215aa92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c202d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
eb6e73c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import subprocess

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT_1,
    EVALUATION_EXAMPLE_IMG,
    LLM_BENCHMARKS_TEXT_2,
    ENTITY_DISTRIBUTION_IMG,
    LLM_BENCHMARKS_TEXT_3,
    TITLE,
    LOGO
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    DATASET_BENCHMARK_COLS,
    TYPES_BENCHMARK_COLS,
    DATASET_COLS,
    Clinical_TYPES_COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    ModelArch,
    PromptTemplateName,
    Precision,
    WeightType,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG


def restart_space():
    API.restart_space(repo_id=REPO_ID)


try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

# Span based results
_, span_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "datasets")
span_based_datasets_leaderboard_df = span_based_datasets_original_df.copy()

_, span_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "clinical_types")
span_based_types_leaderboard_df = span_based_types_original_df.copy()

# Token based results
_, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()

_, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
token_based_types_leaderboard_df = token_based_types_original_df.copy()


(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def update_df(evaluation_metric, shown_columns, subset="datasets"):
    print(evaluation_metric)

    if subset == "datasets":
        match evaluation_metric:
            case "Span Based":
                leaderboard_table_df = span_based_datasets_leaderboard_df.copy()
                hidden_leader_board_df = span_based_datasets_original_df
            case "Token Based":
                leaderboard_table_df = token_based_datasets_leaderboard_df.copy()
                hidden_leader_board_df = token_based_datasets_original_df
            case _:
                pass
    else:
        match evaluation_metric:
            case "Span Based":
                leaderboard_table_df = span_based_types_leaderboard_df.copy()
                hidden_leader_board_df = span_based_types_original_df
            case "Token Based":
                leaderboard_table_df = token_based_types_leaderboard_df.copy()
                hidden_leader_board_df = token_based_types_original_df
            case _:
                pass        
    

    value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns

    return leaderboard_table_df[value_cols], hidden_leader_board_df


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    query: str,
    type_query: list = None,
    architecture_query: list = None,
    size_query: list = None,
    precision_query: str = None,
    show_deleted: bool = False,
):
    filtered_df = filter_models(hidden_df, type_query, architecture_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns, list(hidden_df.columns))
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[
                    AutoEvalColumn.model.name,
                    # AutoEvalColumn.precision.name,
                    # AutoEvalColumn.revision.name,
                ]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, architecture_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    # if show_deleted:
    #     filtered_df = df
    # else:  # Show only still on the hub models
    #     filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    filtered_df = df

    if type_query is not None:
        type_emoji = [t[0] for t in type_query]
        filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]

    if architecture_query is not None:
        arch_types = [t for t in architecture_query]
        filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
            # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
    
    if precision_query is not None:
        if AutoEvalColumn.precision.name in df.columns:
            filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    if size_query is not None:
        numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
        params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
        mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
        filtered_df = filtered_df.loc[mask]

    return filtered_df

def change_submit_request_form(model_architecture):
    match model_architecture:
        case "Encoder":
            return (
                gr.Textbox(label="Threshold for gliner models", visible=False), 
                gr.Radio(
                        choices=["True", "False"],
                        label="Load GLiNER Tokenizer",
                        visible=False
                    ),
                gr.Dropdown(
                        choices=[prompt_template.value for prompt_template in PromptTemplateName],
                        label="Prompt for generation",
                        multiselect=False,
                        # value="HTML Highlighted Spans",
                        interactive=True,
                        visible=False
                    )
            )
        case "Decoder":
            return (
                gr.Textbox(label="Threshold for gliner models", visible=False), 
                gr.Radio(
                        choices=["True", "False"],
                        label="Load GLiNER Tokenizer",
                        visible=False
                    ),
                gr.Dropdown(
                        choices=[prompt_template.value for prompt_template in PromptTemplateName],
                        label="Prompt for generation",
                        multiselect=False,
                        # value="HTML Highlighted Spans",
                        interactive=True,
                        visible=True
                    )
            )
        case "GLiNER Encoder":
            return (
                gr.Textbox(label="Threshold for gliner models", visible=True), 
                gr.Radio(
                        choices=["True", "False"],
                        label="Load GLiNER Tokenizer",
                        visible=True
                    ),
                gr.Dropdown(
                        choices=[prompt_template.value for prompt_template in PromptTemplateName],
                        label="Prompt for generation",
                        multiselect=False,
                        # value="HTML Highlighted Spans",
                        interactive=True,
                        visible=False
                    )
            )

            
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.HTML(LOGO, elem_classes="logo")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… NER Datasets", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.clinical_type_col],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.clinical_type_col
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):

                    eval_metric = gr.Radio(
                            choices=["Span Based", "Token Based"],
                            value = "Span Based",
                            label="Evaluation Metric",
                        )
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model Types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_architecture = gr.CheckboxGroup(
                        label="Architecture Types",
                        choices=[i.value.name for i in ModelArch],
                        value=[i.value.name for i in ModelArch],
                        interactive=True,
                        elem_id="filter-columns-architecture",
                    )
                    # filter_columns_size = gr.CheckboxGroup(
                    #     label="Model sizes (in billions of parameters)",
                    #     choices=list(NUMERIC_INTERVALS.keys()),
                    #     value=list(NUMERIC_INTERVALS.keys()),
                    #     interactive=True,
                    #     elem_id="filter-columns-size",
                    # )

            datasets_leaderboard_df, datasets_original_df = update_df(eval_metric.value, shown_columns.value, subset="datasets")

            leaderboard_table = gr.components.Dataframe(
                value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=datasets_original_df[DATASET_COLS],
                headers=DATASET_COLS,
                datatype=TYPES,
                visible=False,
            )

            eval_metric.change(
                lambda a, b: update_df(a,b, "datasets") , 
                inputs=[
                    eval_metric,
                    shown_columns,
                ], 
                outputs=[
                        leaderboard_table, 
                        hidden_leaderboard_table_for_search,
                        ]
                )
                        
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                    filter_columns_type,
                    filter_columns_architecture
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_columns_architecture,
                # filter_columns_size,
                # deleted_models_visibility,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        search_bar,
                        filter_columns_type,
                        filter_columns_architecture,
                    ],
                    leaderboard_table,
                    queue=True,
                )

            
        with gr.TabItem("πŸ… Clinical Types", elem_id="llm-benchmark-tab-table", id=4):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dataset_task_col],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.dataset_task_col
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                with gr.Column(min_width=320):

                    eval_metric = gr.Radio(
                            choices=["Span Based", "Token Based"],
                            value = "Span Based",
                            label="Evaluation Metric",
                        )                    
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model Types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_architecture = gr.CheckboxGroup(
                        label="Architecture Types",
                        choices=[i.value.name for i in ModelArch],
                        value=[i.value.name for i in ModelArch],
                        interactive=True,
                        elem_id="filter-columns-architecture",
                    )
                    # filter_columns_precision = gr.CheckboxGroup(
                    #     label="Precision",
                    #     choices=[i.value.name for i in Precision],
                    #     value=[i.value.name for i in Precision],
                    #     interactive=True,
                    #     elem_id="filter-columns-precision",
                    # )
                    # filter_columns_size = gr.CheckboxGroup(
                    #     label="Model sizes (in billions of parameters)",
                    #     choices=list(NUMERIC_INTERVALS.keys()),
                    #     value=list(NUMERIC_INTERVALS.keys()),
                    #     interactive=True,
                    #     elem_id="filter-columns-size",
                    # )
            types_leaderboard_df, types_original_df = update_df(eval_metric.value, shown_columns.value, subset="clinical_types")

            leaderboard_table = gr.components.Dataframe(
                value=types_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=types_original_df[Clinical_TYPES_COLS],
                headers=Clinical_TYPES_COLS,
                datatype=TYPES,
                visible=False,
            )

            eval_metric.change(
                fn=lambda a, b: update_df(a,b, "clinical_types"), 
                inputs=[
                    eval_metric,
                    shown_columns,
                ], 
                outputs=[
                        leaderboard_table, 
                        hidden_leaderboard_table_for_search
                        ]
                    )
                        
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                    filter_columns_type,
                    filter_columns_architecture,
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_columns_architecture,
                # filter_columns_precision,
                # filter_columns_size,
                # deleted_models_visibility,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        search_bar,
                        filter_columns_type,
                        filter_columns_architecture,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
            gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
            gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
            gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
            gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():

                    model_name_textbox = gr.Textbox(label="Model name")

                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")

                    model_arch = gr.Radio(
                        choices=[t.to_str(" : ") for t in ModelArch if t != ModelArch.Unknown],
                        label="Model Architecture",
                    )
                    
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    label_normalization_map = gr.Textbox(lines=6, label="Label Normalization Map", placeholder=PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG)
                    gliner_threshold = gr.Textbox(label="Threshold for GLiNER models", visible=False)
                    gliner_tokenizer_bool = gr.Radio(
                        choices=["True", "False"],
                        label="Load GLiNER Tokenizer",
                        visible=False
                    )
                    prompt_name = gr.Dropdown(
                        choices=[prompt_template.value for prompt_template in PromptTemplateName],
                        label="Prompt for generation",
                        multiselect=False,
                        value="HTML Highlighted Spans",
                        interactive=True,
                        visible=False
                    )# should be a dropdown

                    # parsing_function - this is tied to the prompt & therefore does not need to be specified
                    # generation_parameters = gr.Textbox(label="Generation params in json format") just default for now

                    model_arch.change(fn=change_submit_request_form, inputs=model_arch, outputs=[
                        gliner_threshold, 
                        gliner_tokenizer_bool, 
                        prompt_name])

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    # base_model_name_textbox,
                    revision_name_textbox,
                    model_arch,
                    label_normalization_map,
                    gliner_threshold,
                    gliner_tokenizer_bool,
                    prompt_name,
                    # weight_type,
                    model_type,
                ],
                submission_result,
            )


    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])