File size: 26,537 Bytes
c202d7d cc05af6 c202d7d 54f77a5 c202d7d eb6e73c c202d7d eb6e73c 300388f c202d7d 4b57d62 215aa92 cc05af6 c202d7d cc05af6 c202d7d 215aa92 c202d7d cc05af6 3a8ab9c c202d7d f738aa2 c202d7d f738aa2 eb6e73c c202d7d f738aa2 c202d7d cc05af6 4b57d62 cc05af6 4b57d62 cc05af6 c202d7d 4b57d62 c202d7d eb6e73c c202d7d eb6e73c c202d7d eb6e73c c202d7d cc05af6 c202d7d 4b57d62 c202d7d cc05af6 c202d7d cc05af6 c202d7d 4b57d62 cc05af6 c202d7d 215aa92 c202d7d 215aa92 c202d7d eb6e73c c202d7d cc05af6 c202d7d 300388f cc05af6 c202d7d 300388f c202d7d cc05af6 f738aa2 cc05af6 4b57d62 cc05af6 4b57d62 cc05af6 f738aa2 cc05af6 eb6e73c cc05af6 eb6e73c cc05af6 f738aa2 cc05af6 4b57d62 cc05af6 4b57d62 cc05af6 4b57d62 cc05af6 f738aa2 300388f cc05af6 eb6e73c c202d7d eb6e73c c202d7d cc05af6 c202d7d f738aa2 cc05af6 c202d7d 54f77a5 c202d7d 4b57d62 cc05af6 f738aa2 c202d7d eb6e73c c202d7d 300388f c202d7d f738aa2 c202d7d cc05af6 4b57d62 c202d7d cc05af6 4b57d62 cc05af6 c202d7d cc05af6 4b57d62 c202d7d 54f77a5 c202d7d 215aa92 c202d7d eb6e73c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT_1,
EVALUATION_EXAMPLE_IMG,
LLM_BENCHMARKS_TEXT_2,
ENTITY_DISTRIBUTION_IMG,
LLM_BENCHMARKS_TEXT_3,
TITLE,
LOGO
)
from src.display.css_html_js import custom_css
from src.display.utils import (
DATASET_BENCHMARK_COLS,
TYPES_BENCHMARK_COLS,
DATASET_COLS,
Clinical_TYPES_COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
ModelArch,
PromptTemplateName,
Precision,
WeightType,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# Span based results
_, span_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "datasets")
span_based_datasets_leaderboard_df = span_based_datasets_original_df.copy()
_, span_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "clinical_types")
span_based_types_leaderboard_df = span_based_types_original_df.copy()
# Token based results
_, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
_, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
token_based_types_leaderboard_df = token_based_types_original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def update_df(evaluation_metric, shown_columns, subset="datasets"):
print(evaluation_metric)
if subset == "datasets":
match evaluation_metric:
case "Span Based":
leaderboard_table_df = span_based_datasets_leaderboard_df.copy()
hidden_leader_board_df = span_based_datasets_original_df
case "Token Based":
leaderboard_table_df = token_based_datasets_leaderboard_df.copy()
hidden_leader_board_df = token_based_datasets_original_df
case _:
pass
else:
match evaluation_metric:
case "Span Based":
leaderboard_table_df = span_based_types_leaderboard_df.copy()
hidden_leader_board_df = span_based_types_original_df
case "Token Based":
leaderboard_table_df = token_based_types_leaderboard_df.copy()
hidden_leader_board_df = token_based_types_original_df
case _:
pass
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
return leaderboard_table_df[value_cols], hidden_leader_board_df
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
query: str,
type_query: list = None,
architecture_query: list = None,
size_query: list = None,
precision_query: str = None,
show_deleted: bool = False,
):
filtered_df = filter_models(hidden_df, type_query, architecture_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns, list(hidden_df.columns))
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumn.model.name,
# AutoEvalColumn.precision.name,
# AutoEvalColumn.revision.name,
]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, architecture_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
# if show_deleted:
# filtered_df = df
# else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
filtered_df = df
if type_query is not None:
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
if architecture_query is not None:
arch_types = [t for t in architecture_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
if precision_query is not None:
if AutoEvalColumn.precision.name in df.columns:
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
if size_query is not None:
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
def change_submit_request_form(model_architecture):
match model_architecture:
case "Encoder":
return (
gr.Textbox(label="Threshold for gliner models", visible=False),
gr.Radio(
choices=["True", "False"],
label="Load GLiNER Tokenizer",
visible=False
),
gr.Dropdown(
choices=[prompt_template.value for prompt_template in PromptTemplateName],
label="Prompt for generation",
multiselect=False,
# value="HTML Highlighted Spans",
interactive=True,
visible=False
)
)
case "Decoder":
return (
gr.Textbox(label="Threshold for gliner models", visible=False),
gr.Radio(
choices=["True", "False"],
label="Load GLiNER Tokenizer",
visible=False
),
gr.Dropdown(
choices=[prompt_template.value for prompt_template in PromptTemplateName],
label="Prompt for generation",
multiselect=False,
# value="HTML Highlighted Spans",
interactive=True,
visible=True
)
)
case "GLiNER Encoder":
return (
gr.Textbox(label="Threshold for gliner models", visible=True),
gr.Radio(
choices=["True", "False"],
label="Load GLiNER Tokenizer",
visible=True
),
gr.Dropdown(
choices=[prompt_template.value for prompt_template in PromptTemplateName],
label="Prompt for generation",
multiselect=False,
# value="HTML Highlighted Spans",
interactive=True,
visible=False
)
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.HTML(LOGO, elem_classes="logo")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
NER Datasets", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.clinical_type_col],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.clinical_type_col
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
eval_metric = gr.Radio(
choices=["Span Based", "Token Based"],
value = "Span Based",
label="Evaluation Metric",
)
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_architecture = gr.CheckboxGroup(
label="Architecture Types",
choices=[i.value.name for i in ModelArch],
value=[i.value.name for i in ModelArch],
interactive=True,
elem_id="filter-columns-architecture",
)
# filter_columns_size = gr.CheckboxGroup(
# label="Model sizes (in billions of parameters)",
# choices=list(NUMERIC_INTERVALS.keys()),
# value=list(NUMERIC_INTERVALS.keys()),
# interactive=True,
# elem_id="filter-columns-size",
# )
datasets_leaderboard_df, datasets_original_df = update_df(eval_metric.value, shown_columns.value, subset="datasets")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[DATASET_COLS],
headers=DATASET_COLS,
datatype=TYPES,
visible=False,
)
eval_metric.change(
lambda a, b: update_df(a,b, "datasets") ,
inputs=[
eval_metric,
shown_columns,
],
outputs=[
leaderboard_table,
hidden_leaderboard_table_for_search,
]
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_columns_architecture,
# filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_columns_architecture,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π
Clinical Types", elem_id="llm-benchmark-tab-table", id=4):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dataset_task_col],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.dataset_task_col
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
eval_metric = gr.Radio(
choices=["Span Based", "Token Based"],
value = "Span Based",
label="Evaluation Metric",
)
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_architecture = gr.CheckboxGroup(
label="Architecture Types",
choices=[i.value.name for i in ModelArch],
value=[i.value.name for i in ModelArch],
interactive=True,
elem_id="filter-columns-architecture",
)
# filter_columns_precision = gr.CheckboxGroup(
# label="Precision",
# choices=[i.value.name for i in Precision],
# value=[i.value.name for i in Precision],
# interactive=True,
# elem_id="filter-columns-precision",
# )
# filter_columns_size = gr.CheckboxGroup(
# label="Model sizes (in billions of parameters)",
# choices=list(NUMERIC_INTERVALS.keys()),
# value=list(NUMERIC_INTERVALS.keys()),
# interactive=True,
# elem_id="filter-columns-size",
# )
types_leaderboard_df, types_original_df = update_df(eval_metric.value, shown_columns.value, subset="clinical_types")
leaderboard_table = gr.components.Dataframe(
value=types_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=types_original_df[Clinical_TYPES_COLS],
headers=Clinical_TYPES_COLS,
datatype=TYPES,
visible=False,
)
eval_metric.change(
fn=lambda a, b: update_df(a,b, "clinical_types"),
inputs=[
eval_metric,
shown_columns,
],
outputs=[
leaderboard_table,
hidden_leaderboard_table_for_search
]
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_columns_architecture,
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_columns_architecture,
# filter_columns_precision,
# filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_columns_architecture,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_arch = gr.Radio(
choices=[t.to_str(" : ") for t in ModelArch if t != ModelArch.Unknown],
label="Model Architecture",
)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
label_normalization_map = gr.Textbox(lines=6, label="Label Normalization Map", placeholder=PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG)
gliner_threshold = gr.Textbox(label="Threshold for GLiNER models", visible=False)
gliner_tokenizer_bool = gr.Radio(
choices=["True", "False"],
label="Load GLiNER Tokenizer",
visible=False
)
prompt_name = gr.Dropdown(
choices=[prompt_template.value for prompt_template in PromptTemplateName],
label="Prompt for generation",
multiselect=False,
value="HTML Highlighted Spans",
interactive=True,
visible=False
)# should be a dropdown
# parsing_function - this is tied to the prompt & therefore does not need to be specified
# generation_parameters = gr.Textbox(label="Generation params in json format") just default for now
model_arch.change(fn=change_submit_request_form, inputs=model_arch, outputs=[
gliner_threshold,
gliner_tokenizer_bool,
prompt_name])
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
# base_model_name_textbox,
revision_name_textbox,
model_arch,
label_normalization_map,
gliner_threshold,
gliner_tokenizer_bool,
prompt_name,
# weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|