File size: 4,782 Bytes
723d6ec
620cefc
 
 
e70d647
620cefc
 
 
 
 
 
 
 
 
03a9d25
 
620cefc
 
 
03a9d25
 
620cefc
 
 
e70d647
 
 
 
 
 
 
f9a6a59
e70d647
 
 
 
 
 
 
620cefc
 
 
041b1ad
620cefc
041b1ad
620cefc
 
 
 
 
7dc3119
 
 
 
 
 
 
 
 
 
 
e70d647
620cefc
041b1ad
 
 
 
 
 
620cefc
 
 
 
 
 
 
c8f68db
620cefc
 
 
 
 
 
 
 
 
 
 
 
 
 
e70d647
620cefc
 
 
e70d647
620cefc
7dc3119
041b1ad
7dc3119
e70d647
 
 
620cefc
7dc3119
 
e70d647
 
620cefc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.metrics.pairwise import paired_cosine_distances
from sklearn.preprocessing import normalize
from rolaser import RoLaserEncoder

laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt"
laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab"
laser_tokenizer = 'spm'
laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer)

rolaser_checkpoint = f"{os.environ['ROLASER']}/models/rolaser.pt"
rolaser_vocab = f"{os.environ['ROLASER']}/models/rolaser.cvocab"
rolaser_tokenizer = 'roberta'
rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer)

c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-rolaser.pt"
c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab"
c_rolaser_tokenizer = 'char'
c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer)


STD_SENTENCES = ['See you tomorrow.'] * 10
UGC_SENTENCES = [
    'See you t03orro3.',
    'C. U. tomorrow.',
    'sea you tomorrow.',
    'See yo utomorrow.',
    'See you tmrw.',
    'See you tkmoerow.',
    'Cu 2moro.',
    'See yow tomorrow.',
    'C. Yew tomorrow.',
    'c ya 2morrow.'
]

def add_text_inputs(i):
    col1, col2 = st.columns(2)
    with col1:
        text_input1 = st.text_input('Enter standard text here:', key=f'std{i}', value=STD_SENTENCES[i], label_visibility='collapsed')
    with col2:
        text_input2 = st.text_input('Enter non-standard text here:', key=f'ugc{i}', value=UGC_SENTENCES[i], label_visibility='collapsed')
    return text_input1, text_input2

def main():
    st.title('Pairwise Cosine Distance Calculator')

    info = '''
    :bookmark: **Paper:** [Making Sentence Embeddings Robust to User-Generated Content (Nishimwe et al., 2024)](https://arxiv.org/abs/2403.17220)  
    :link: **Github:** [https://github.com/lydianish/RoLASER](https://github.com/lydianish/RoLASER)

    This demo app computes text embeddings of sentence pairs using the LASER encoder and its robust students RoLASER and c-RoLASER. 
    The pairwise cosine distances between the sentences are then computed and displayed. 
    '''
    st.markdown(info)
            
    st.header('Standard and Non-standard Text Input Pairs:')

    num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=5)

    col1, col2 = st.columns(2)
    with col1:
        st.write('Enter standard text here:')
    with col2:
        st.write('Enter non-standard text here:')

    std_text_inputs = []
    ugc_text_inputs = []
    for i in range(num_pairs):
        pair = add_text_inputs(i)
        std_text_inputs.append(pair[0])
        ugc_text_inputs.append(pair[1])

    st.caption('*The models are case-insensitive: all text will be lowercased.*')
    if st.button('Submit'):
        X_std_laser = normalize(laser_model.encode(std_text_inputs))
        X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs))
        X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser)

        X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs))
        X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs))
        X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser)

        X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs))
        X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs))
        X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser)

        outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos'])
        outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs)   
        outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3)
        outputs['std'] = np.tile(std_text_inputs, 3)
        outputs['ugc'] = np.tile(ugc_text_inputs, 3)
        outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser])

        st.header('Cosine Distance Scores:')
        st.caption('*This bar plot is interactive: Hover on the bars to display values. Click on the legend items to filter models.*')
        fig = px.bar(outputs, x='pair', y='cos', color='model', barmode='group', hover_data=['ugc', 'std'])
        fig.update_xaxes(title_text='Text Input Pair')
        fig.update_yaxes(title_text='Cosine Distance')
        st.plotly_chart(fig, use_container_width=True)

        st.header('Average Cosine Distance Scores:')
        st.caption('*This data table is interactive: Click on a column header to sort values.*')
        st.write(outputs.groupby('model')['cos'].describe())

        
if __name__ == "__main__":
    main()