lydianish commited on
Commit
e70d647
1 Parent(s): 6d251ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -14
app.py CHANGED
@@ -2,6 +2,7 @@ import os, sys
2
  import streamlit as st
3
  import pandas as pd
4
  import numpy as np
 
5
  from sklearn.metrics.pairwise import paired_cosine_distances
6
  from sklearn.preprocessing import normalize
7
  from rolaser import RoLaserEncoder
@@ -21,18 +22,33 @@ c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab"
21
  c_rolaser_tokenizer = 'char'
22
  c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer)
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def add_text_inputs(i):
25
  col1, col2 = st.columns(2)
26
  with col1:
27
- text_input1 = st.text_input('Enter standard text here:', f'std{i}')
28
  with col2:
29
- text_input2 = st.text_input('Enter non-standard text here:', f'ugc{i}')
30
  return text_input1, text_input2
31
 
32
  def main():
33
  st.title('Pairwise Cosine Distance Calculator')
34
 
35
- num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=1)
36
 
37
  std_text_inputs = []
38
  ugc_text_inputs = []
@@ -41,11 +57,6 @@ def main():
41
  std_text_inputs.append(pair[0])
42
  ugc_text_inputs.append(pair[1])
43
 
44
- if st.button('Add Text Input Pair'):
45
- pair = add_text_inputs(len(std_text_inputs))
46
- std_text_inputs.append(pair[0])
47
- ugc_text_inputs.append(pair[1])
48
-
49
  if st.button('Submit'):
50
  X_std_laser = normalize(laser_model.encode(std_text_inputs))
51
  X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs))
@@ -60,19 +71,22 @@ def main():
60
  X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser)
61
 
62
  outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos'])
63
- outputs['model'] = np.repeat(['LASER', 'RoLASER', 'C-RoLASER'], 3)
64
  outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3)
65
  outputs['std'] = np.tile(std_text_inputs, 3)
66
  outputs['ugc'] = np.tile(ugc_text_inputs, 3)
67
- outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser], axis=1)
68
 
69
  st.write('## Cosine Distance Scores:')
70
- st.bar_chart(outputs, x='pair', y='cos', color='model', title='Cosine Distance Scores', xlabel='Text Input Pair', ylabel='Cosine Distance', legend='Model')
 
 
 
 
71
 
72
  st.write('## Average Cosine Distance Scores:')
73
- st.write(f'LASER: {outputs[outputs["model"]=="LASER"]["cos"].mean()}')
74
- st.write(f'RoLASER: {outputs[outputs["model"]=="RoLASER"]["cos"].mean()}')
75
- st.write(f'C-RoLASER: {outputs[outputs["model"]=="C-RoLASER"]["cos"].mean()}')
76
 
77
  if __name__ == "__main__":
78
  main()
 
2
  import streamlit as st
3
  import pandas as pd
4
  import numpy as np
5
+ import plotly.express as px
6
  from sklearn.metrics.pairwise import paired_cosine_distances
7
  from sklearn.preprocessing import normalize
8
  from rolaser import RoLaserEncoder
 
22
  c_rolaser_tokenizer = 'char'
23
  c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer)
24
 
25
+
26
+ STD_SENTENCES = ['See you tomorrow.'] * 10
27
+ UGC_SENTENCES = [
28
+ 'See you tmrw.',
29
+ 'See you t03orro3.',
30
+ 'C. U. tomorrow.',
31
+ 'sea you tomorrow.',
32
+ 'See yo utomorrow.',
33
+ 'See you tkmoerow.',
34
+ 'Cu 2moro.',
35
+ 'See yow tomorrow.',
36
+ 'C. Yew tomorrow.',
37
+ 'c ya 2morrow.'
38
+ ]
39
+
40
  def add_text_inputs(i):
41
  col1, col2 = st.columns(2)
42
  with col1:
43
+ text_input1 = st.text_input('Enter standard text here:', key=f'std{i}', value=STD_SENTENCES[i])
44
  with col2:
45
+ text_input2 = st.text_input('Enter non-standard text here:', key=f'ugc{i}', value=UGC_SENTENCES[i])
46
  return text_input1, text_input2
47
 
48
  def main():
49
  st.title('Pairwise Cosine Distance Calculator')
50
 
51
+ num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=5)
52
 
53
  std_text_inputs = []
54
  ugc_text_inputs = []
 
57
  std_text_inputs.append(pair[0])
58
  ugc_text_inputs.append(pair[1])
59
 
 
 
 
 
 
60
  if st.button('Submit'):
61
  X_std_laser = normalize(laser_model.encode(std_text_inputs))
62
  X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs))
 
71
  X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser)
72
 
73
  outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos'])
74
+ outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs)
75
  outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3)
76
  outputs['std'] = np.tile(std_text_inputs, 3)
77
  outputs['ugc'] = np.tile(ugc_text_inputs, 3)
78
+ outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser])
79
 
80
  st.write('## Cosine Distance Scores:')
81
+ fig = px.bar(outputs, x='x_column', y='y_column', color='model', barmode='group')
82
+ fig.update_layout(title='Cosine Distance Scores')
83
+ fig.update_xaxes(title_text='Text Input Pair')
84
+ fig.update_yaxes(title_text='Cosine Distance')
85
+ st.plotly_chart(fig, use_container_width=True)
86
 
87
  st.write('## Average Cosine Distance Scores:')
88
+ st.write(outputs.groupby('model')['cos'].describe())
89
+
 
90
 
91
  if __name__ == "__main__":
92
  main()