Spaces:
Runtime error
Runtime error
File size: 102,050 Bytes
122057f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
logger = get_logger(__name__)
LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class LogitsProcessor:
"""Abstract base class for all logit processors that can be applied during generation."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsWarper:
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsProcessorList(list):
"""
This class can be used to create a list of [`LogitsProcessor`] or [`LogitsWarper`] to subsequently process a
`scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each
[`LogitsProcessor`] or [`LogitsWarper`] to the inputs.
"""
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs that are specific to a logits processor.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
"""
for processor in self:
function_args = inspect.signature(processor.__call__).parameters
if len(function_args) > 2:
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
raise ValueError(
f"Make sure that all the required parameters: {list(function_args.keys())} for "
f"{processor.__class__} are passed to the logits processor."
)
scores = processor(input_ids, scores, **kwargs)
else:
scores = processor(input_ids, scores)
return scores
class MinLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Note that, for decoder-only models
like most LLMs, the length includes the prompt.
Args:
min_length (`int`):
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("A number:", return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting `min_length` to a value smaller than the uncontrolled output length has no impact
>>> gen_out = model.generate(**inputs, min_length=3)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting a larger `min_length` will force the model to generate beyond its natural ending point, which is not
>>> # necessarily incorrect
>>> gen_out = model.generate(**inputs, min_length=10)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one thousand, nine hundred and ninety-four
```
"""
def __init__(self, min_length: int, eos_token_id: Union[int, List[int]]):
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
self.min_length = min_length
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len < self.min_length:
for i in self.eos_token_id:
scores[:, i] = -float("inf")
return scores
class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0.
Contrarily to [`MinLengthLogitsProcessor`], this processor ignores the prompt.
Args:
prompt_length_to_skip (`int`):
The input tokens length. Not a valid argument when used with `generate` as it will automatically assign the
input length.
min_new_tokens (`int`):
The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer(["A number:"], return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting `min_new_tokens` will force the model to generate beyond its natural ending point, which is not
>>> # necessarily incorrect
>>> gen_out = model.generate(**inputs, min_new_tokens=2)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one thousand
```
"""
def __init__(self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int]]):
for arg_name, arg_value in [
("prompt_length_to_skip", prompt_length_to_skip),
("min_new_tokens", min_new_tokens),
]:
if not isinstance(arg_value, int) or arg_value < 0:
raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
self.prompt_length_to_skip = prompt_length_to_skip
self.min_new_tokens = min_new_tokens
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip
if new_tokens_length < self.min_new_tokens:
for i in self.eos_token_id:
scores[:, i] = -float("inf")
return scores
class TemperatureLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] for temperature (exponential scaling output probability distribution), which effectively means
that it can control the randomness of the predicted tokens. Often used together with [`TopPLogitsWarper`] and
[`TopKLogitsWarper`].
<Tip>
Make sure that `do_sample=True` is included in the `generate` arguments otherwise the temperature value won't have
any effect.
</Tip>
Args:
temperature (`float`):
Strictly positive float value used to modulate the logits distribution. A value smaller than `1` decreases
randomness (and vice versa), with `0` being equivalent to shifting all probability mass to the most likely
token.
Examples:
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0) # for reproducibility
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> model.config.pad_token_id = model.config.eos_token_id
>>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt")
>>> # With temperature=1.0, the default, we consistently get random outputs due to random sampling.
>>> generate_kwargs = {"max_new_tokens": 10, "do_sample": True, "temperature": 1.0, "num_return_sequences": 2}
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is a joint venture between GEO Group, one of',
'Hugging Face Company is not an exact science – but what we believe does']
>>> # However, with temperature close to 0, it approximates greedy decoding strategies (invariant)
>>> generate_kwargs["temperature"] = 0.0001
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is a company that has been around for over 20 years',
'Hugging Face Company is a company that has been around for over 20 years']
```
"""
def __init__(self, temperature: float):
if not isinstance(temperature, float) or not (temperature > 0):
except_msg = (
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
"scores will be invalid."
)
if isinstance(temperature, float) and temperature == 0.0:
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
raise ValueError(except_msg)
self.temperature = temperature
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores / self.temperature
return scores
class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at
most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt.
In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around
1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce
repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage
repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly.
Args:
penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated
tokens. Between 0.0 and 1.0 rewards previously generated tokens.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> # Initializing the model and tokenizer for it
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer(["I'm not going to"], return_tensors="pt")
>>> # This shows a normal generate without any specific parameters
>>> summary_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
I'm not going to be able to do that. I'm going to be able to do that
>>> # This generates a penalty for repeated tokens
>>> penalized_ids = model.generate(**inputs, repetition_penalty=1.1)
>>> print(tokenizer.batch_decode(penalized_ids, skip_special_tokens=True)[0])
I'm not going to be able to do that. I'll just have to go out and play
```
"""
def __init__(self, penalty: float):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = penalty
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
score = torch.gather(scores, 1, input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, input_ids, score)
return scores
class EncoderRepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that works similarly to [`RepetitionPenaltyLogitsProcessor`], but with an *inverse* penalty
that is applied to the tokens present in the prompt. In other words, a penalty above 1.0 increases the odds of
selecting tokens that were present in the prompt.
It was designed to avoid hallucination in input-grounded tasks, like summarization. Although originally intended
for encoder-decoder models, it can also be used with decoder-only models like LLMs.
Args:
penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 rewards prompt tokens. Between 0.0
and 1.0 penalizes prompt tokens.
encoder_input_ids (`torch.LongTensor`):
The encoder_input_ids that should be repeated within the decoder ids.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer(["Alice and Bob. The third member's name was"], return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
Alice and Bob. The third member's name was not mentioned.
>>> # With the `encoder_repetition_penalty` argument we can trigger this logits processor in `generate`, which can
>>> # promote the use of prompt tokens ("Bob" in this example)
>>> gen_out = model.generate(**inputs, encoder_repetition_penalty=1.2)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
Alice and Bob. The third member's name was Bob. The third member's name was Bob.
```
"""
def __init__(self, penalty: float, encoder_input_ids: torch.LongTensor):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = 1 / penalty
self.encoder_input_ids = encoder_input_ids
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
score = torch.gather(scores, 1, self.encoder_input_ids)
# if score < 0 then hallucination penalty has to be multiplied to increase the token probabilities
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, self.encoder_input_ids, score)
return scores
class TopPLogitsWarper(LogitsWarper):
"""
[`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. Often
used together with [`TemperatureLogitsWarper`] and [`TopKLogitsWarper`].
Args:
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With `top_p` sampling, the output gets restricted to high-probability tokens.
>>> # Pro tip: In practice, LLMs use `top_p` in the 0.9-0.95 range.
>>> outputs = model.generate(**inputs, do_sample=True, top_p=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_p = float(top_p)
if top_p < 0 or top_p > 1.0:
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
self.top_p = top_p
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - self.top_p)
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopKLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. Often used together
with [`TemperatureLogitsWarper`] and [`TopPLogitsWarper`].
Args:
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: A, B, C, D", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: A, B, C, D, G, H, I. A, M
>>> # With `top_k` sampling, the output gets restricted the k most likely tokens.
>>> # Pro tip: In practice, LLMs use `top_k` in the 5-50 range.
>>> outputs = model.generate(**inputs, do_sample=True, top_k=2)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: A, B, C, D, E, F, G, H, I
```
"""
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
self.top_k = max(top_k, min_tokens_to_keep)
self.filter_value = filter_value
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
top_k = min(self.top_k, scores.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None]
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TypicalLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs typical decoding. Inspired on how humans use language, it prioritizes tokens whose
log probability is close to the entropy of the token probability distribution. This means that the most likely
tokens may be discarded in the process.
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
Args:
mass (`float`, *optional*, defaults to 0.9):
Value of typical_p between 0 and 1 inclusive, defaults to 0.9.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("1, 2, 3", return_tensors="pt")
>>> # We can see that greedy decoding produces a sequence of numbers
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
>>> # For this particular seed, we can see that sampling produces nearly the same low-information (= low entropy)
>>> # sequence
>>> set_seed(18)
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10
>>> # With `typical_p` set, the most obvious sequence is no longer produced, which may be good for your problem
>>> set_seed(18)
>>> outputs = model.generate(
... **inputs, do_sample=True, typical_p=0.1, return_dict_in_generate=True, output_scores=True
... )
>>> print(tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0])
1, 2, 3 and 5
>>> # We can see that the token corresponding to "4" (token 934) in the second position, the most likely token
>>> # as seen with greedy decoding, was entirely blocked out
>>> print(outputs.scores[1][0, 934])
tensor(-inf)
```
"""
def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
mass = float(mass)
if not (mass > 0 and mass < 1):
raise ValueError(f"`typical_p` has to be a float > 0 and < 1, but is {mass}")
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
self.filter_value = filter_value
self.mass = mass
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# calculate entropy
normalized = torch.nn.functional.log_softmax(scores, dim=-1)
p = torch.exp(normalized)
ent = -(normalized * p).nansum(-1, keepdim=True)
# shift and sort
shifted_scores = torch.abs((-normalized) - ent)
sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False)
sorted_logits = scores.gather(-1, sorted_indices)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative mass above the threshold
last_ind = (cumulative_probs < self.mass).sum(dim=1)
last_ind.clamp_(max=sorted_scores.shape[-1] - 1)
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class EpsilonLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs epsilon-sampling, i.e. restricting to tokens with `prob >= epsilon`. Takes the
largest min_tokens_to_keep tokens if no tokens satisfy this constraint. See [Truncation Sampling as Language Model
Desmoothing](https://arxiv.org/abs/2210.15191) for more information.
Args:
epsilon (`float`):
If set to > 0, only the most tokens with probabilities `epsilon` or higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With epsilon sampling, the output gets restricted to high-probability tokens. Note that this is similar to
>>> # Top P sampling, which restricts tokens based on their cumulative probability.
>>> # Pro tip: The paper recomends using `epsilon_cutoff` values between 3e-4 and 9e-4
>>> outputs = model.generate(**inputs, do_sample=True, epsilon_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
epsilon = float(epsilon)
if epsilon <= 0 or epsilon >= 1:
raise ValueError(f"`epsilon_cutoff` has to be a float > 0 and < 1, but is {epsilon}")
min_tokens_to_keep = int(min_tokens_to_keep)
if min_tokens_to_keep < 1:
raise ValueError(
f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
)
self.epsilon = epsilon
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Determine which indices to remove
probabilities = scores.softmax(dim=-1)
indices_to_remove = probabilities < self.epsilon
# Keep the words with the 'min_tokens_to_keep'-highest probabilities
top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check
indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class EtaLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs eta-sampling, a technique to filter out tokens with probabilities below a dynamic
cutoff value, `eta`, which is calculated based on a combination of the hyperparameter `epsilon` and the entropy of
the token probabilities, i.e. `eta := min(epsilon, sqrt(epsilon * e^-entropy(probabilities)))`. Takes the largest
min_tokens_to_keep tokens if no tokens satisfy this constraint. It addresses the issue of poor quality in long
samples of text generated by neural language models leading to more coherent and fluent text. See [Truncation
Sampling as Language Model Desmoothing](https://arxiv.org/abs/2210.15191) for more information. Note: `do_sample`
must be set to `True` for this `LogitsWarper` to work.
Args:
epsilon (`float`):
A float value in the range (0, 1). Hyperparameter used to calculate the dynamic cutoff value, `eta`. The
suggested values from the paper ranges from 3e-4 to 4e-3 depending on the size of the model.
filter_value (`float`, *optional*, defaults to -inf):
All values that are found to be below the dynamic cutoff value, `eta`, are set to this float value. This
parameter is useful when logits need to be modified for very low probability tokens that should be excluded
from generation entirely.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Specifies the minimum number of tokens that must be kept for generation, regardless of their probabilities.
For example, if `min_tokens_to_keep` is set to 1, at least one token will always be kept for generation,
even if all tokens have probabilities below the cutoff `eta`.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With eta sampling, the output gets restricted to high-probability tokens. You can see it as a dynamic form of
>>> # epsilon sampling that adapts its cutoff probability based on the entropy (high entropy = lower cutoff).
>>> # Pro tip: The paper recomends using `eta_cutoff` values between 3e-4 to 4e-3
>>> outputs = model.generate(**inputs, do_sample=True, eta_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
epsilon = float(epsilon)
if epsilon <= 0 or epsilon >= 1:
raise ValueError(f"`eta_cutoff` has to be a float > 0 and < 1, but is {epsilon}")
min_tokens_to_keep = int(min_tokens_to_keep)
if min_tokens_to_keep < 1:
raise ValueError(
f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
)
self.epsilon = torch.tensor(epsilon)
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Calculate the adaptive cutoff
probabilities = scores.softmax(dim=-1)
entropy = torch.distributions.Categorical(logits=scores).entropy()
eta = torch.min(self.epsilon, torch.sqrt(self.epsilon) * torch.exp(-entropy))[..., None]
indices_to_remove = probabilities < eta
# Keep the words with the 'min_tokens_to_keep'-highest probabilities
top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check
indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
def _get_ngrams(ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int):
"""
Assume ngram_size=2 and prev_input_ids=tensor([[40, 2883, 2712, 4346]]). The output of generated ngrams look like
this {(40,): [2883], (2883,): [2712], (2712,): [4346]}.
Args:
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
num_hypos (`int`):
The number of hypotheses for which n-grams need to be generated.
Returns:
generated_ngrams (`dict`):
Dictionary of generated ngrams.
"""
# Initialize an empty list of dictionaries, one for each hypothesis (index) in the range of num_hypos
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
# Loop through each n-gram of size ngram_size in the list of tokens (gen_tokens)
for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
return generated_ngrams
def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len):
"""
Determines the banned tokens for the current hypothesis based on previously generated n-grams.
Args:
banned_ngrams (`dict`):
A dictionary containing previously generated n-grams for each hypothesis.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
cur_len (`int`):
The current length of the token sequences for which the n-grams are being checked.
Returns:
List of tokens that are banned.
"""
# Before decoding the next token, prevent decoding of ngrams that have already appeared
start_idx = cur_len + 1 - ngram_size
ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist())
return banned_ngrams.get(ngram_idx, [])
def _calc_banned_ngram_tokens(
ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int
) -> List[Iterable[int]]:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
return [[] for _ in range(num_hypos)]
generated_ngrams = _get_ngrams(ngram_size, prev_input_ids, num_hypos)
banned_tokens = [
_get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len)
for hypo_idx in range(num_hypos)
]
return banned_tokens
class NoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
N-grams are groups of "n" consecutive words, characters, or tokens taken from a sequence of text. Given the
sentence: "She runs fast", the bi-grams (n=2) would be ("she", "runs") and ("runs", "fast"). In text generation,
avoiding repetitions of word sequences provides a more diverse output. This [`LogitsProcessor`] enforces no
repetition of n-grams by setting the scores of banned tokens to negative infinity which eliminates those tokens
from consideration when further processing the scores. Note that, for decoder-only models like most LLMs, the
prompt is also considered to obtain the n-grams.
[Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345).
<Tip>
Use n-gram penalties with care. For instance, penalizing 2-grams (bigrams) in an article about the city of New York
might lead to undesirable outcomes where the city's name appears only once in the entire text.
[Reference](https://huggingface.co/blog/how-to-generate)
</Tip>
Args:
ngram_size (`int`):
All ngrams of size `ngram_size` can only occur once.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer(["Today I"], return_tensors="pt")
>>> output = model.generate(**inputs)
>>> print(tokenizer.decode(output[0], skip_special_tokens=True))
Today I’m not sure if I’m going to be able to do it.
>>> # Now let's add ngram size using `no_repeat_ngram_size`. This stops the repetitions ("I’m") in the output.
>>> output = model.generate(**inputs, no_repeat_ngram_size=2)
>>> print(tokenizer.decode(output[0], skip_special_tokens=True))
Today I’m not sure if I can get a better understanding of the nature of this issue
```
"""
def __init__(self, ngram_size: int):
if not isinstance(ngram_size, int) or ngram_size <= 0:
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
self.ngram_size = ngram_size
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
num_batch_hypotheses = scores.shape[0]
cur_len = input_ids.shape[-1]
banned_batch_tokens = _calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class EncoderNoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that works similarly to [`NoRepeatNGramLogitsProcessor`], but applied exclusively to prevent
the repetition of n-grams present in the prompt.
It was designed to promote chattiness in a language model, by preventing the generation of n-grams present in
previous conversation rounds.
Args:
encoder_ngram_size (`int`):
All ngrams of size `ngram_size` can only occur within the encoder input ids.
encoder_input_ids (`int`):
The encoder_input_ids that should not be repeated within the decoder ids.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("Alice: I love cats. What do you love?\nBob:", return_tensors="pt")
>>> # With greedy decoding, we see Bob repeating Alice's opinion. If Bob was a chatbot, it would be a poor one.
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice: I love cats. What do you love?
Bob: I love cats. What do you
>>> # With this logits processor, we can prevent Bob from repeating Alice's opinion.
>>> outputs = model.generate(**inputs, encoder_no_repeat_ngram_size=2)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice: I love cats. What do you love?
Bob: My cats are very cute.
```
"""
def __init__(self, encoder_ngram_size: int, encoder_input_ids: torch.LongTensor):
if not isinstance(encoder_ngram_size, int) or encoder_ngram_size <= 0:
raise ValueError(
f"`encoder_ngram_size` has to be a strictly positive integer, but is {encoder_ngram_size}"
)
self.ngram_size = encoder_ngram_size
if len(encoder_input_ids.shape) == 1:
encoder_input_ids = encoder_input_ids.unsqueeze(0)
self.batch_size = encoder_input_ids.shape[0]
self.generated_ngrams = _get_ngrams(encoder_ngram_size, encoder_input_ids, self.batch_size)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# B x num_beams
num_hypos = scores.shape[0]
num_beams = num_hypos // self.batch_size
cur_len = input_ids.shape[-1]
banned_batch_tokens = [
_get_generated_ngrams(
self.generated_ngrams[hypo_idx // num_beams], input_ids[hypo_idx], self.ngram_size, cur_len
)
for hypo_idx in range(num_hypos)
]
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class SequenceBiasLogitsProcessor(LogitsProcessor):
"""
[`LogitsProcessor`] that applies an additive bias on sequences. The bias is applied to the last token of a sequence
when the next generated token can complete it. Consequently, to take the most of biasing sequences with more than
one token, consider using beam methods (to gracefully work around partially completed sequences that have a
negative bias) and applying the bias to their prefixes (to ensure the bias is applied earlier).
<Tip>
In order to get the token ids of the sequences that you want to bias, make sure to set `add_prefix_space=True` when
initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The
`add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours
come from `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).
</Tip>
Args:
sequence_bias (`Dict[Tuple[int], float]`):
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias
will always be applied. Otherwise, the bias will only be applied if the sequence in question is about to be
completed (in the token selection step after this processor is applied).
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["The full name of Donald is Donald"], return_tensors="pt")
>>> summary_ids = model.generate(inputs["input_ids"], max_new_tokens=4)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Trump Jr
>>> # Now let's control generation through a bias. Please note that the tokenizer is initialized differently!
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)
>>> def get_tokens_as_tuple(word):
... return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0])
>>> # If we add a negative bias without beam search, it may become "stuck" in a prefix without good continuations
>>> sequence_bias = {get_tokens_as_tuple("Trump"): -10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Donald,
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Rumsfeld,
>>> # We can also add a positive bias to nudge the model towards specific tokens or continuations
>>> sequence_bias = {get_tokens_as_tuple("Donald Duck"): 10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Duck.
```
"""
def __init__(self, sequence_bias: Dict[Tuple[int], float]):
self.sequence_bias = sequence_bias
self._validate_arguments()
# Bias variables that will be populated on the first call (for retrocompatibility purposes, the vocabulary size
# is infered in the first usage, which inhibits initializing here)
self.length_1_bias = None
self.prepared_bias_variables = False
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# 1 - Prepares the bias tensors. This is only needed the first time the logit processor is called.
if not self.prepared_bias_variables:
self._prepare_bias_variables(scores)
# 2 - prepares an empty bias to add
bias = torch.zeros_like(scores)
# 3 - include the bias from length = 1
bias += self.length_1_bias
# 4 - include the bias from length > 1, after determining which biased sequences may be completed.
for sequence_ids, sequence_bias in self.sequence_bias.items():
if len(sequence_ids) == 1: # the sequence is of length 1, already applied
continue
if len(sequence_ids) > input_ids.shape[1]: # the sequence is longer than the context, ignore
continue
prefix_length = len(sequence_ids) - 1
last_token = sequence_ids[-1]
matching_rows = torch.eq(
input_ids[:, -prefix_length:],
torch.tensor(sequence_ids[:-1], dtype=input_ids.dtype, device=input_ids.device),
).prod(dim=1)
bias[:, last_token] += torch.where(
matching_rows.bool(),
torch.tensor(sequence_bias, device=input_ids.device),
torch.tensor(0.0, device=input_ids.device),
)
# 5 - apply the bias to the scores
scores = scores + bias
return scores
def _prepare_bias_variables(self, scores: torch.FloatTensor):
vocabulary_size = scores.shape[-1]
# Check biased tokens out of bounds
invalid_biases = []
for sequence_ids in self.sequence_bias:
for token_id in sequence_ids:
if token_id >= vocabulary_size:
invalid_biases.append(token_id)
if len(invalid_biases) > 0:
raise ValueError(
f"The model vocabulary size is {vocabulary_size}, but the following tokens were being biased: "
f"{invalid_biases}"
)
# Precompute the bias tensors to be applied. Sequences of length 1 are kept separately, as they can be applied
# with simpler logic.
self.length_1_bias = torch.zeros((vocabulary_size,), dtype=torch.float).to(scores.device)
for sequence_ids, bias in self.sequence_bias.items():
if len(sequence_ids) == 1:
self.length_1_bias[sequence_ids[-1]] = bias
self.prepared_bias_variables = True
def _validate_arguments(self):
sequence_bias = self.sequence_bias
if not isinstance(sequence_bias, dict) or len(sequence_bias) == 0:
raise ValueError(f"`sequence_bias` has to be a non-empty dictionary, but is {sequence_bias}.")
if any(not isinstance(sequence_ids, tuple) for sequence_ids in sequence_bias.keys()):
raise ValueError(f"`sequence_bias` has to be a dict with tuples as keys, but is {sequence_bias}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in sequence_ids)
or len(sequence_ids) == 0
for sequence_ids in sequence_bias.keys()
):
raise ValueError(
f"Each key in `sequence_bias` has to be a non-empty tuple of positive integers, but is "
f"{sequence_bias}."
)
if any(not isinstance(bias, float) for bias in sequence_bias.values()):
raise ValueError(f"`sequence_bias` has to be a dict with floats as values, but is {sequence_bias}.")
class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
"""
[`LogitsProcessor`] that enforces that specified sequences will never be selected.
<Tip>
In order to get the token ids of the words that should not appear in the generated text, make sure to set
`add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words,
add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers,
as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more
[here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).
</Tip>
Args:
bad_words_ids (`List[List[int]]`):
List of list of token ids that are not allowed to be generated.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["In a word, the cake is a"], return_tensors="pt")
>>> output_ids = model.generate(inputs["input_ids"], max_new_tokens=5, pad_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
In a word, the cake is a bit of a mess.
>>> # Now let's take the bad words out. Please note that the tokenizer is initialized differently
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)
>>> def get_tokens_as_list(word_list):
... "Converts a sequence of words into a list of tokens"
... tokens_list = []
... for word in word_list:
... tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
... tokens_list.append(tokenized_word)
... return tokens_list
>>> bad_words_ids = get_tokens_as_list(word_list=["mess"])
>>> output_ids = model.generate(
... inputs["input_ids"], max_new_tokens=5, bad_words_ids=bad_words_ids, pad_token_id=tokenizer.eos_token_id
... )
>>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
In a word, the cake is a bit of a surprise.
```
"""
def __init__(self, bad_words_ids: List[List[int]], eos_token_id: Union[int, List[int]]):
self.bad_word_ids = bad_words_ids
self._validate_arguments()
# Filter EOS token from bad_words_ids
if eos_token_id is None:
eos_token_id = []
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
bad_words_ids = list(
filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids)
)
# Forbidding a sequence is equivalent to setting its bias to -inf
sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids}
super().__init__(sequence_bias=sequence_bias)
def _validate_arguments(self):
bad_words_ids = self.bad_word_ids
if not isinstance(bad_words_ids, list) or len(bad_words_ids) == 0:
raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.")
if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids):
raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids)
for bad_word_ids in bad_words_ids
):
raise ValueError(
f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}."
)
class PrefixConstrainedLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces constrained generation and is useful for prefix-conditioned constrained
generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information.
Args:
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`):
This function constraints the beam search to allowed tokens only at each step. This function takes 2
arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the
next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID
`batch_id`.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("Alice and Bob", return_tensors="pt")
>>> # By default, it continues generating according to the model's logits
>>> outputs = model.generate(**inputs, max_new_tokens=5)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice and Bob are friends
>>> # We can contrain it with `prefix_allowed_tokens_fn` to force a certain behavior based on a prefix.
>>> # For instance, we can force an entire entity to be generated when its beginning is detected.
>>> entity = tokenizer(" Bob Marley", return_tensors="pt").input_ids[0] # 3 tokens
>>> def prefix_allowed_tokens_fn(batch_id, input_ids):
... '''
... Attempts to generate 'Bob Marley' when 'Bob' is detected.
... In this case, `batch_id` is not used, but you can set rules for each batch member.
... '''
... if input_ids[-1] == entity[0]:
... return entity[1]
... elif input_ids[-2] == entity[0] and input_ids[-1] == entity[1]:
... return entity[2]
... return list(range(tokenizer.vocab_size)) # If no match, allow all tokens
>>> outputs = model.generate(**inputs, max_new_tokens=5, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice and Bob Marley
```
"""
def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int):
self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
self._num_beams = num_beams
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
mask = torch.full_like(scores, -math.inf)
for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])):
for beam_id, sent in enumerate(beam_sent):
prefix_allowed_tokens = self._prefix_allowed_tokens_fn(batch_id, sent)
if len(prefix_allowed_tokens) == 0:
raise ValueError(
f"`prefix_allowed_tokens_fn` returned an empty list for batch ID {batch_id}."
f"This means that the constraint is unsatisfiable. Please check your implementation"
f"of `prefix_allowed_tokens_fn` "
)
mask[batch_id * self._num_beams + beam_id, prefix_allowed_tokens] = 0
return scores + mask
class HammingDiversityLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces diverse beam search.
Note that this logits processor is only effective for [`PreTrainedModel.group_beam_search`]. See [Diverse Beam
Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf) for more
details.
Traditional beam search often generates very similar sequences across different beams.
`HammingDiversityLogitsProcessor` addresses this by penalizing beams that generate tokens already chosen by other
beams in the same time step.
Args:
diversity_penalty (`float`):
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
particular time. A higher `diversity_penalty` will enforce greater diversity among the beams. Adjusting
this value can help strike a balance between diversity and natural likelihood.
num_beams (`int`):
Number of beams for beam search. 1 means no beam search.
num_beam_groups (`int`):
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
[this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import torch
>>> # Initialize the model and tokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> # A long text about the solar system
>>> text = (
... "The Solar System is a gravitationally bound system comprising the Sun and the objects that orbit it, "
... "either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight "
... "planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System "
... "bodies. The Solar System formed 4.6 billion years ago from the gravitational collapse of a giant "
... "interstellar molecular cloud."
... )
>>> inputs = tokenizer("summarize: " + text, return_tensors="pt")
>>> # Generate diverse summary
>>> outputs_diverse = model.generate(
... **inputs,
... num_beam_groups=2,
... diversity_penalty=10.0,
... max_length=100,
... num_beams=4,
... num_return_sequences=2,
... )
>>> summaries_diverse = tokenizer.batch_decode(outputs_diverse, skip_special_tokens=True)
>>> # Generate non-diverse summary
>>> outputs_non_diverse = model.generate(
... **inputs,
... max_length=100,
... num_beams=4,
... num_return_sequences=2,
... )
>>> summary_non_diverse = tokenizer.batch_decode(outputs_non_diverse, skip_special_tokens=True)
>>> # With `diversity_penalty`, the resulting beams are much more diverse
>>> print(summary_non_diverse)
['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
'the Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.']
>>> print(summaries_diverse)
['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
'the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets. the rest of the objects are smaller objects, such as the five dwarf planets and small solar system bodies.']
```
"""
def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int):
if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0):
raise ValueError("`diversity_penalty` should be a float strictly larger than 0.")
self._diversity_penalty = diversity_penalty
if not isinstance(num_beams, int) or num_beams < 2:
raise ValueError("`num_beams` should be an integer strictly larger than 1.")
self._num_beams = num_beams
if not isinstance(num_beam_groups, int) or num_beam_groups < 2:
raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.")
if num_beam_groups > num_beams:
raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.")
self._num_sub_beams = num_beams // num_beam_groups
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
current_tokens: torch.LongTensor,
beam_group_idx: int,
) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
current_tokens (`torch.LongTensor` of shape `(batch_size)`):
Indices of input sequence tokens in the vocabulary, corresponding to the tokens selected by the other
beam groups in the current generation step.
beam_group_idx (`int`):
The index of the beam group currently being processed.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
"""
# hamming diversity: penalise using same token in current group which was used in previous groups at
# the same time step
batch_size = current_tokens.shape[0] // self._num_beams
group_start_idx = beam_group_idx * self._num_sub_beams
group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams)
group_size = group_end_idx - group_start_idx
vocab_size = scores.shape[-1]
if group_start_idx == 0:
return scores
for batch_idx in range(batch_size):
# predicted tokens of last time step of previous groups
previous_group_tokens = current_tokens[
batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx
]
token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device)
scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency
return scores
class ForcedBOSTokenLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces the specified token as the first generated token. Used with encoder-decoder
models.
Args:
bos_token_id (`int`):
The id of the token to force as the first generated token.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
>>> inputs = tokenizer("Translate from English to German: I love cats.", return_tensors="pt")
>>> # By default, it continues generating according to the model's logits
>>> outputs = model.generate(**inputs, max_new_tokens=10)
>>> print(tokenizer.batch_decode(outputs)[0])
<pad> Ich liebe Kitty.</s>
>>> # We can use `forced_bos_token_id` to force the start of generation with an encoder-decoder model
>>> # (including forcing it to end straight away with an EOS token)
>>> outputs = model.generate(**inputs, max_new_tokens=10, forced_bos_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(outputs)[0])
<pad></s>
```
"""
def __init__(self, bos_token_id: int):
self.bos_token_id = bos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf")
scores[:, self.bos_token_id] = 0
return scores
class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.
Args:
max_length (`int`):
The maximum length of the sequence to be generated.
eos_token_id (`Union[int, List[int]]`):
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt")
>>> # By default, it continues generating according to the model's logits
>>> outputs = model.generate(**inputs, max_new_tokens=10)
>>> print(tokenizer.batch_decode(outputs)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8
>>> # `forced_eos_token_id` ensures the generation ends with a EOS token
>>> outputs = model.generate(**inputs, max_new_tokens=10, forced_eos_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(outputs)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7,<|endoftext|>
```
"""
def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]):
self.max_length = max_length
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == self.max_length - 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i not in self.eos_token_id]] = -float("inf")
for i in self.eos_token_id:
scores[:, i] = 0
return scores
class InfNanRemoveLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that removes all `nan` and `inf` values to avoid the generation method to fail. Note that using
the logits processor should only be used if necessary since it can slow down the generation method.
This logits processor has no `generate` example, as there shouldn't be a correct combination of flags that warrants
its use.
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# set all nan values to 0.0
scores[scores != scores] = 0.0
# set all +/-inf values to max/min possible value
scores[scores == float("inf")] = torch.finfo(scores.dtype).max
scores[scores == float("-inf")] = torch.finfo(scores.dtype).min
return scores
class ExponentialDecayLengthPenalty(LogitsProcessor):
r"""
[`LogitsProcessor`] that exponentially increases the score of the `eos_token_id` after `start_index` has been
reached. This allows generating shorter sequences without having a hard cutoff, allowing the `eos_token` to be
predicted in a meaningful position.
Args:
exponential_decay_length_penalty (`tuple(int, float)`):
This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty
starts and `decay_factor` represents the factor of exponential decay
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
input_ids_seq_length (`int`):
The length of the input sequence.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> text = "Just wanted to let you know, I"
>>> inputs = tokenizer(text, return_tensors="pt")
>>> # Let's consider that we want short sentences, so we limit `max_length=30`. However, we observe that the answer
>>> # tends to end abruptly.
>>> set_seed(1)
>>> outputs = model.generate(**inputs, do_sample=True, temperature=0.9, max_length=30, pad_token_id=50256)
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was
published in 2010. Although
>>> # To promote the appearance of the EOS token at the right time, we add the `exponential_decay_length_penalty =
>>> # (start_index, decay_factor)`. Instead of cutting at max_tokens, the output comes to an end before and usually
>>> # with more meaning. What happens is that starting from `start_index` the EOS token score will be increased
>>> # by `decay_factor` exponentially. However, if you set a high decay factor, you may also end up with abruptly
>>> # ending sequences.
>>> set_seed(1)
>>> outputs = model.generate(
... **inputs,
... do_sample=True,
... temperature=0.9,
... max_length=30,
... pad_token_id=50256,
... exponential_decay_length_penalty=(15, 1.6),
... )
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network
which<|endoftext|>
>>> # With a small decay factor, you will have a higher chance of getting a meaningful sequence.
>>> set_seed(1)
>>> outputs = model.generate(
... **inputs,
... do_sample=True,
... temperature=0.9,
... max_length=30,
... pad_token_id=50256,
... exponential_decay_length_penalty=(15, 1.01),
... )
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was
published in 2010.<|endoftext|>
```
"""
def __init__(
self,
exponential_decay_length_penalty: Tuple[int, float],
eos_token_id: Union[int, List[int]],
input_ids_seq_length: int,
):
self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length
self.regulation_factor = exponential_decay_length_penalty[1]
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len > self.regulation_start:
for i in self.eos_token_id:
penalty_idx = cur_len - self.regulation_start
# To support negative logits we compute the penalty of the absolute value and add to the original logit
scores[:, i] = scores[:, i] + torch.abs(scores[:, i]) * (pow(self.regulation_factor, penalty_idx) - 1)
return scores
class LogitNormalization(LogitsProcessor, LogitsWarper):
r"""
[`LogitsWarper`] and [`LogitsProcessor`] for normalizing the scores using log-softmax. It's important to normalize
the scores during beam search, after applying the logits processors or warpers, since the search algorithm used in
this library doesn't do it (it only does it before, but they may need re-normalization) but it still supposes that
the scores are normalized when comparing the hypotheses.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt")
>>> # By default, the scores are not normalized -- the sum of their exponentials is NOT a normalized probability
>>> # distribution, summing to 1
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(torch.sum(torch.exp(outputs.scores[-1])))
tensor(816.3250)
>>> # Normalizing them may have a positive impact on beam methods, or when using the scores on your application
>>> outputs = model.generate(**inputs, renormalize_logits=True, return_dict_in_generate=True, output_scores=True)
>>> print(torch.sum(torch.exp(outputs.scores[-1])))
tensor(1.0000)
```
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores.log_softmax(dim=-1)
return scores
class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor):
r"""
[`SuppressTokensAtBeginLogitsProcessor`] supresses a list of tokens as soon as the `generate` function starts
generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are
not generated at the begining. Originally created for
[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).
Examples:
```python
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> # Whisper has `begin_suppress_tokens` set by default (= `[220, 50256]`). 50256 is the EOS token, so this means
>>> # it can't generate and EOS token in the first iteration, but it can in the others.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(outputs.scores[1][0, 50256]) # 1 (and not 0) is the first freely generated token
tensor(-inf)
>>> print(outputs.scores[-1][0, 50256]) # in other places we can see some probability mass for EOS
tensor(29.9010)
>>> # If we disable `begin_suppress_tokens`, we can generate EOS in the first iteration.
>>> outputs = model.generate(
... **inputs, return_dict_in_generate=True, output_scores=True, begin_suppress_tokens=None
... )
>>> print(outputs.scores[1][0, 50256])
tensor(11.2027)
```
"""
def __init__(self, begin_suppress_tokens, begin_index):
self.begin_suppress_tokens = list(begin_suppress_tokens)
self.begin_index = begin_index
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if input_ids.shape[1] == self.begin_index:
scores[:, self.begin_suppress_tokens] = -float("inf")
return scores
class SuppressTokensLogitsProcessor(LogitsProcessor):
r"""
This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so
that they are not generated. Originally created for
[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).
Examples:
```python
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> # Whisper has a long list of suppressed tokens. For instance, in this case, the token 1 is suppressed by default.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(outputs.scores[1][0, 1]) # 1 (and not 0) is the first freely generated token
tensor(-inf)
>>> # If we disable `suppress_tokens`, we can generate it.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, suppress_tokens=None)
>>> print(outputs.scores[1][0, 1])
tensor(5.7738)
```
"""
def __init__(self, suppress_tokens):
self.suppress_tokens = list(suppress_tokens)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores[:, self.suppress_tokens] = -float("inf")
return scores
class ForceTokensLogitsProcessor(LogitsProcessor):
r"""
This processor takes a list of pairs of integers which indicates a mapping from generation indices to token
indices that will be forced before generation. The processor will set their log probs to `inf` so that they are
sampled at their corresponding index. Originally created for
[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).
Examples:
```python
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> # This Whisper model forces the generation to start with `50362` at the first position by default, i.e.
>>> # `"forced_decoder_ids": [[1, 50362]]`. This means all other tokens are masked out.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(
... all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362)
... )
True
>>> print(outputs.scores[0][0, 50362])
tensor(0.)
>>> # If we disable `forced_decoder_ids`, we stop seeing that effect
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, forced_decoder_ids=None)
>>> print(
... all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362)
... )
False
>>> print(outputs.scores[0][0, 50362])
tensor(19.3140)
```
"""
def __init__(self, force_token_map: List[List[int]]):
self.force_token_map = dict(force_token_map)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
generation_idx = input_ids.shape[-1]
current_token = self.force_token_map.get(generation_idx, None)
if current_token is not None:
scores[:, :] = -float("inf")
scores[:, current_token] = 0
return scores
class WhisperTimeStampLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that modifies the logits for the generation of timestamps in the transcription. When the input
tokens are at a specific threshold, the processor sets the scores to negative infinity. The processor makes sure
that timestamp tokens appear in pairs, by masking out the logits that would break this pairing pattern. This is
done to maintain the consistency and structure of generated timestamps. It also ensures that when the predicted
probability of sampling any of the timestamp token is greater than any individual non-timestamp token, those
non-timestamp logits are set to negative infinity. This is done to ensure the generation of timestamps over other
potential tokens.
See [the paper](https://arxiv.org/abs/2212.04356) for more information.
Args:
generate_config (`GenerateConfig`):
The generate config used to generate the output. The following parameters are required:
eos_token_id (`int`, *optional*, defaults to 50257):
The id of the *end-of-sequence* token.
no_timestamps_token_id (`int`, *optional*, defaults to 50363):
The id of the `"<|notimestamps|>"` token.
max_initial_timestamp_index (`int`, *optional*, defaults to 1):
Used to set the maximum value of the initial timestamp. This is used to prevent the model from
predicting timestamps that are too far in the future.
_detect_timestamp_from_logprob (`bool`, *optional*): Whether timestamps can be predicted from logprobs over all timestamps.
Examples:
``` python
>>> import torch
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration, GenerationConfig
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[3]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> #Displaying timestamps
>>> generated_ids = model.generate(inputs=input_features, return_timestamps=True)
>>> transcription = processor.batch_decode(generated_ids, decode_with_timestamps=True)[0]
>>> print("Transcription:", transcription)
Transcription: <|startoftranscript|><|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all, and can<|6.44|><|6.44|> discover in it but little of rocky Ithaca.<|9.44|><|endoftext|>
>>> #No timestamps & change EOS:
>>> #This allows the user to select a specific token to terminate the sequence on, in this case it's the word "can"(460)
>>> model.generation_config.eos_token_id = 460
>>> generated_ids = model.generate(inputs=input_features,return_timestamps=False)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print("Transcription:", transcription)
Transcription: He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can
```
"""
def __init__(
self, generate_config, _detect_timestamp_from_logprob: Optional[bool] = None
): # support for the kwargs
self.eos_token_id = generate_config.eos_token_id
self.no_timestamps_token_id = generate_config.no_timestamps_token_id
self.timestamp_begin = generate_config.no_timestamps_token_id + 1
# this variable is mostly just used for testing
self._detect_timestamp_from_logprob = (
_detect_timestamp_from_logprob
if _detect_timestamp_from_logprob is not None
else getattr(generate_config, "_detect_timestamp_from_logprob", True)
)
self.begin_index = (
len(generate_config.forced_decoder_ids) + 1 if generate_config.forced_decoder_ids is not None else 1
)
self.max_initial_timestamp_index = getattr(generate_config, "max_initial_timestamp_index", None)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# suppress <|notimestamps|> which is handled by without_timestamps
scores[:, self.no_timestamps_token_id] = -float("inf")
# timestamps have to appear in pairs, except directly before eos_token; mask logits accordingly
for k in range(input_ids.shape[0]):
sampled_tokens = input_ids[k, self.begin_index :]
seq = list(sampled_tokens.tolist())
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.timestamp_begin
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.timestamp_begin
if last_was_timestamp:
if penultimate_was_timestamp: # has to be non-timestamp
scores[k, self.timestamp_begin :] = -float("inf")
else: # cannot be normal text tokens
scores[k, : self.eos_token_id] = -float("inf")
timestamps = sampled_tokens[sampled_tokens.ge(self.timestamp_begin)]
if timestamps.numel() > 0:
# `timestamps` shouldn't decrease; forbid timestamp tokens smaller than the last
# The following lines of code are copied from: https://github.com/openai/whisper/pull/914/files#r1137085090
if last_was_timestamp and not penultimate_was_timestamp:
timestamp_last = timestamps[-1]
else:
# Avoid to emit <|0.00|> again
timestamp_last = timestamps[-1] + 1
scores[k, self.timestamp_begin : timestamp_last] = -float("inf")
# apply the `max_initial_timestamp` option
if input_ids.shape[1] == self.begin_index:
scores[:, : self.timestamp_begin] = -float("inf")
if self.max_initial_timestamp_index is not None:
last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
scores[:, last_allowed + 1 :] = -float("inf")
# if sum of probability over timestamps is above any other token, sample timestamp
logprobs = torch.nn.functional.log_softmax(scores.float(), dim=-1)
for k in range(input_ids.shape[0]):
timestamp_logprob = logprobs[k, self.timestamp_begin :].logsumexp(dim=-1)
max_text_token_logprob = logprobs[k, : self.timestamp_begin].max()
if timestamp_logprob > max_text_token_logprob and self._detect_timestamp_from_logprob:
scores[k, : self.timestamp_begin] = -float("inf")
return scores
class ClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] for classifier free guidance (CFG). The scores are split over the batch dimension,
where the first half correspond to the conditional logits (predicted from the input prompt) and the second half
correspond to the unconditional logits (predicted from an empty or 'null' prompt). The processor computes a
weighted average across the conditional and unconditional logits, parameterised by the `guidance_scale`.
See [the paper](https://arxiv.org/abs/2306.05284) for more information.
<Tip warning={true}>
This logits processor is exclusivelly compatible with
[MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen)
</Tip>
Args:
guidance_scale (float):
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality.
Examples:
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
```
"""
def __init__(self, guidance_scale):
if guidance_scale > 1:
self.guidance_scale = guidance_scale
else:
raise ValueError(
"Require guidance scale >1 to use the classifier free guidance processor, got guidance scale "
f"{guidance_scale}."
)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# simple check to make sure we have compatible batch sizes between our
# logits scores (cond + uncond) and input ids (cond only)
if scores.shape[0] != 2 * input_ids.shape[0]:
raise ValueError(
f"Logits should have twice the batch size of the input ids, the first half of batches corresponding to "
f"the conditional inputs, and the second half of batches corresponding to the unconditional inputs. Got "
f"batch size {scores.shape[0]} for the logits and {input_ids.shape[0]} for the input ids."
)
unguided_bsz = scores.shape[0] // 2
cond_logits, uncond_logits = scores.split(unguided_bsz, dim=0)
scores = uncond_logits + (cond_logits - uncond_logits) * self.guidance_scale
return scores
class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing alternated generation between the two codebooks of Bark.
<Tip warning={true}>
This logits processor is exclusivelly compatible with
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark)'s fine submodel. See the model documentation
for examples.
</Tip>
Args:
input_start_len (`int`):
The length of the initial input sequence.
semantic_vocab_size (`int`):
Vocabulary size of the semantic part, i.e number of tokens associated to the semantic vocabulary.
codebook_size (`int`):
Number of tokens associated to the codebook.
"""
def __init__(self, input_start_len: int, semantic_vocab_size: int, codebook_size: int):
if not isinstance(input_start_len, int) or input_start_len < 0:
raise ValueError(f"`input_starting_length` has to be a non-negative integer, but is {input_start_len}")
self.input_start_len = input_start_len
self.semantic_vocab_size = semantic_vocab_size
self.codebook_size = codebook_size
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
curr_len = input_ids.shape[-1]
# even -> first codebook, odd -> second codebook
is_first_codebook = ((curr_len - self.input_start_len) % 2) == 0
if is_first_codebook:
scores[:, : self.semantic_vocab_size] = -float("inf")
scores[:, self.semantic_vocab_size + self.codebook_size :] = -float("inf")
else:
scores[:, : self.semantic_vocab_size + self.codebook_size] = -float("inf")
return scores
class UnbatchedClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
r"""
Logits processor for Classifier-Free Guidance (CFG). The processors computes a weighted average across scores
from prompt conditional and prompt unconditional (or negative) logits, parameterized by the `guidance_scale`.
The unconditional scores are computed internally by prompting `model` with the `unconditional_ids` branch.
See [the paper](https://arxiv.org/abs/2306.17806) for more information.
Args:
guidance_scale (`float`):
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale != 1`.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality. A value smaller than 1 has the opposite effect, while
making the negative prompt provided with negative_prompt_ids (if any) act as a positive prompt.
model (`PreTrainedModel`):
The model computing the unconditional scores. Supposedly the same as the one computing the conditional
scores. Both models must use the same tokenizer.
unconditional_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary for the unconditional branch. If unset, will default to
the last token of the prompt.
unconditional_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Attention mask for unconditional_ids.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to cache key/values during the negative prompt forward pass.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["Today, a dragon flew over Paris, France,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=1.5)
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 50 people and injuring more than 100'
>>> # with a negative prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=2, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 130 people. French media reported that'
>>> # with a positive prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=0, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Today, a dragon flew over Paris, France, and I'm very happy to be here. I"
```
"""
def __init__(
self,
guidance_scale: float,
model,
unconditional_ids: Optional[torch.LongTensor] = None,
unconditional_attention_mask: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = True,
):
self.guidance_scale = guidance_scale
self.model = model
self.unconditional_context = {
"input_ids": unconditional_ids,
"attention_mask": unconditional_attention_mask,
"use_cache": use_cache,
"past_key_values": None,
"first_pass": True,
}
def get_unconditional_logits(self, input_ids):
if self.unconditional_context["first_pass"]:
if self.unconditional_context["input_ids"] is None:
self.unconditional_context["input_ids"] = input_ids[:, -1:]
if self.unconditional_context["attention_mask"] is None:
self.unconditional_context["attention_mask"] = torch.ones_like(
self.unconditional_context["input_ids"], dtype=torch.long
)
input_ids = self.unconditional_context["input_ids"]
attention_mask = self.unconditional_context["attention_mask"]
self.unconditional_context["first_pass"] = False
else:
attention_mask = torch.cat(
[
self.unconditional_context["attention_mask"],
torch.ones_like(input_ids[:, -1:], dtype=torch.long),
],
dim=1,
)
if not self.unconditional_context["use_cache"]:
input_ids = torch.cat([self.unconditional_context["input_ids"], input_ids[:, -1:]], dim=1)
else:
input_ids = input_ids[:, -1:]
self.unconditional_context["input_ids"] = input_ids
self.unconditional_context["attention_mask"] = attention_mask
out = self.model(
input_ids,
attention_mask=attention_mask,
use_cache=self.unconditional_context["use_cache"],
past_key_values=self.unconditional_context["past_key_values"],
)
self.unconditional_context["past_key_values"] = out.get("past_key_values", None)
return out.logits
def __call__(self, input_ids, scores):
scores = torch.nn.functional.log_softmax(scores, dim=-1)
if self.guidance_scale == 1:
return scores
logits = self.get_unconditional_logits(input_ids)
unconditional_logits = torch.nn.functional.log_softmax(logits[:, -1], dim=-1)
out = self.guidance_scale * (scores - unconditional_logits) + unconditional_logits
return out
class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
r"""This processor ensures that the EOS token is selected if its probability is greater than the `min_eos_p`.
<Tip warning={true}>
This logits processor is exclusivelly compatible with
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark). See the model documentation for examples.
</Tip>
Args:
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
min_eos_p (`float`, *optional*):
Minimum end of speech threshold.
"""
def __init__(self, eos_token_id: Union[int, List[int]], min_eos_p: float):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
if min_eos_p is not None and min_eos_p <= 0:
raise ValueError(f"`min_eos_p` has to be a positive float, but is {min_eos_p}")
self.min_eos_p = min_eos_p
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if self.min_eos_p:
probs = torch.nn.functional.softmax(scores.float(), dim=-1)
# create scores full of -inf except for the eos_token_id
early_stop_scores = torch.ones_like(scores) * -float("inf")
early_stop_scores[:, self.eos_token_id] = scores[:, self.eos_token_id]
do_early_stop = probs[:, self.eos_token_id] > self.min_eos_p
scores = torch.where(do_early_stop, early_stop_scores, scores)
return scores
|