Spaces:
Running
Running
File size: 10,611 Bytes
391cdfe f1218fc 0f710a2 f1218fc 0f710a2 f1218fc 8df3985 f1218fc 8df3985 f1218fc c43287d 8df3985 64105c5 c43287d f1218fc 214fb7b f1218fc 391cdfe 0f710a2 391cdfe 0618e58 391cdfe 862427b 391cdfe c43287d f1218fc 391cdfe f1218fc c43287d f1218fc 391cdfe f1218fc 391cdfe f1218fc 391cdfe e4d11b8 a5ac953 e4d11b8 a5ac953 862427b a5ac953 f1218fc c706328 62d5db7 c706328 c43287d 64105c5 55b0c51 c43287d e4d11b8 55b0c51 c43287d 55b0c51 c43287d 55b0c51 f1218fc c43287d 214fb7b c43287d 62d5db7 c43287d 62d5db7 b40b5fc 62d5db7 f1218fc 62d5db7 caedafb f1218fc 64105c5 c43287d 64105c5 c43287d 55b0c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import copy
import json
import re
import requests
from curl_cffi import requests as cffi_requests
from tclogger import logger
from constants.models import MODEL_MAP
from constants.envs import PROXIES
from constants.headers import HUGGINGCHAT_POST_HEADERS, HUGGINGCHAT_SETTINGS_POST_DATA
from messagers.message_outputer import OpenaiStreamOutputer
from messagers.message_composer import MessageComposer
from messagers.token_checker import TokenChecker
class HuggingchatRequester:
def __init__(self, model: str):
if model in MODEL_MAP.keys():
self.model = model
else:
self.model = "nous-mixtral-8x7b"
self.model_fullname = MODEL_MAP[self.model]
def get_hf_chat_id(self):
request_url = "https://huggingface.co/chat/settings"
request_body = copy.deepcopy(HUGGINGCHAT_SETTINGS_POST_DATA)
extra_body = {
"activeModel": self.model_fullname,
}
request_body.update(extra_body)
logger.note(f"> hf-chat ID:", end=" ")
res = cffi_requests.post(
request_url,
headers=HUGGINGCHAT_POST_HEADERS,
json=request_body,
proxies=PROXIES,
timeout=10,
impersonate="chrome",
)
self.hf_chat_id = res.cookies.get("hf-chat")
if self.hf_chat_id:
logger.success(f"[{self.hf_chat_id}]")
else:
logger.warn(f"[{res.status_code}]")
logger.warn(res.text)
raise ValueError(f"Failed to get hf-chat ID: {res.text}")
def get_conversation_id(self, system_prompt: str = ""):
request_url = "https://huggingface.co/chat/conversation"
request_headers = HUGGINGCHAT_POST_HEADERS
extra_headers = {
"Cookie": f"hf-chat={self.hf_chat_id}",
}
request_headers.update(extra_headers)
request_body = {
"model": self.model_fullname,
"preprompt": system_prompt,
}
logger.note(f"> Conversation ID:", end=" ")
res = requests.post(
request_url,
headers=request_headers,
json=request_body,
proxies=PROXIES,
timeout=10,
)
if res.status_code == 200:
conversation_id = res.json()["conversationId"]
logger.success(f"[{conversation_id}]")
else:
logger.warn(f"[{res.status_code}]")
raise ValueError("Failed to get conversation ID!")
self.conversation_id = conversation_id
return conversation_id
def get_last_message_id(self):
request_url = f"https://huggingface.co/chat/conversation/{self.conversation_id}/__data.json?x-sveltekit-invalidated=11"
request_headers = HUGGINGCHAT_POST_HEADERS
extra_headers = {
"Cookie": f"hf-chat={self.hf_chat_id}",
}
request_headers.update(extra_headers)
logger.note(f"> Message ID:", end=" ")
message_id = None
res = requests.post(
request_url,
headers=request_headers,
proxies=PROXIES,
timeout=10,
)
if res.status_code == 200:
data = res.json()["nodes"][1]["data"]
# find the last element which matches the format of uuid4
uuid_pattern = re.compile(
r"^[\da-f]{8}-[\da-f]{4}-[\da-f]{4}-[\da-f]{4}-[\da-f]{12}$"
)
for item in data:
if type(item) == str and uuid_pattern.match(item):
message_id = item
logger.success(f"[{message_id}]")
else:
logger.warn(f"[{res.status_code}]")
raise ValueError("Failed to get message ID!")
return message_id
def log_request(self, url, method="GET"):
logger.note(f"> {method}:", end=" ")
logger.mesg(f"{url}", end=" ")
def log_response(
self, res: requests.Response, stream=False, iter_lines=False, verbose=False
):
status_code = res.status_code
status_code_str = f"[{status_code}]"
if status_code == 200:
logger_func = logger.success
else:
logger_func = logger.warn
logger.enter_quiet(not verbose)
logger_func(status_code_str)
if status_code != 200:
logger_func(res.text)
if stream:
if not iter_lines:
return
for line in res.iter_lines():
line = line.decode("utf-8")
line = re.sub(r"^data:\s*", "", line)
line = line.strip()
if line:
try:
data = json.loads(line, strict=False)
msg_type = data.get("type")
if msg_type == "status":
msg_status = data.get("status")
elif msg_type == "stream":
content = data.get("token", "")
logger_func(content, end="")
elif msg_type == "finalAnswer":
full_content = data.get("text")
logger.success("\n[Finished]")
break
else:
pass
except Exception as e:
logger.warn(e)
else:
logger_func(res.json())
logger.exit_quiet(not verbose)
def chat_completions(self, messages: list[dict], iter_lines=False, verbose=False):
composer = MessageComposer(model=self.model)
system_prompt, input_prompt = composer.decompose_to_system_and_input_prompt(
messages
)
checker = TokenChecker(input_str=system_prompt + input_prompt, model=self.model)
checker.check_token_limit()
self.get_hf_chat_id()
self.get_conversation_id(system_prompt=system_prompt)
message_id = self.get_last_message_id()
request_url = f"https://huggingface.co/chat/conversation/{self.conversation_id}"
request_headers = copy.deepcopy(HUGGINGCHAT_POST_HEADERS)
extra_headers = {
"Content-Type": "text/event-stream",
"Referer": request_url,
"Cookie": f"hf-chat={self.hf_chat_id}",
}
request_headers.update(extra_headers)
request_body = {
"files": [],
"id": message_id,
"inputs": input_prompt,
"is_continue": False,
"is_retry": False,
"web_search": False,
}
self.log_request(request_url, method="POST")
res = requests.post(
request_url,
headers=request_headers,
json=request_body,
proxies=PROXIES,
stream=True,
)
self.log_response(res, stream=True, iter_lines=iter_lines, verbose=verbose)
return res
class HuggingchatStreamer:
def __init__(self, model: str):
if model in MODEL_MAP.keys():
self.model = model
else:
self.model = "nous-mixtral-8x7b"
self.model_fullname = MODEL_MAP[self.model]
self.message_outputer = OpenaiStreamOutputer(model=self.model)
def chat_response(self, messages: list[dict], verbose=False):
requester = HuggingchatRequester(model=self.model)
return requester.chat_completions(
messages=messages, iter_lines=False, verbose=verbose
)
def chat_return_generator(self, stream_response: requests.Response, verbose=False):
is_finished = False
for line in stream_response.iter_lines():
line = line.decode("utf-8")
line = re.sub(r"^data:\s*", "", line)
line = line.strip()
if not line:
continue
content = ""
content_type = "Completions"
try:
data = json.loads(line, strict=False)
msg_type = data.get("type")
if msg_type == "status":
msg_status = data.get("status")
continue
elif msg_type == "stream":
content_type = "Completions"
content = data.get("token", "")
if verbose:
logger.success(content, end="")
elif msg_type == "finalAnswer":
content_type = "Finished"
content = ""
full_content = data.get("text")
if verbose:
logger.success("\n[Finished]")
is_finished = True
break
else:
continue
except Exception as e:
logger.warn(e)
output = self.message_outputer.output(
content=content, content_type=content_type
)
yield output
if not is_finished:
yield self.message_outputer.output(content="", content_type="Finished")
def chat_return_dict(self, stream_response: requests.Response):
final_output = self.message_outputer.default_data.copy()
final_output["choices"] = [
{
"index": 0,
"finish_reason": "stop",
"message": {"role": "assistant", "content": ""},
}
]
final_content = ""
for item in self.chat_return_generator(stream_response):
try:
data = json.loads(item)
delta = data["choices"][0]["delta"]
delta_content = delta.get("content", "")
if delta_content:
final_content += delta_content
except Exception as e:
logger.warn(e)
final_output["choices"][0]["message"]["content"] = final_content.strip()
return final_output
if __name__ == "__main__":
# model = "command-r-plus"
model = "llama3-70b"
# model = "zephyr-141b"
streamer = HuggingchatStreamer(model=model)
messages = [
{
"role": "system",
"content": "You are an LLM developed by CloseAI.\nYour name is Hansimov-Copilot.",
},
{"role": "user", "content": "Hello, what is your role?"},
{"role": "assistant", "content": "I am an LLM."},
{"role": "user", "content": "What is your name?"},
]
streamer.chat_response(messages=messages)
# HF_ENDPOINT=https://hf-mirror.com python -m networks.huggingchat_streamer
|