Spaces:
Running
Running
:gem: [Feature] New TokenChecker: count tokens and check token limit
Browse files- networks/huggingchat_streamer.py +40 -10
networks/huggingchat_streamer.py
CHANGED
@@ -24,6 +24,39 @@ from messagers.message_outputer import OpenaiStreamOutputer
|
|
24 |
from messagers.message_composer import MessageComposer
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class HuggingchatRequester:
|
28 |
def __init__(self, model: str):
|
29 |
if model in MODEL_MAP.keys():
|
@@ -175,6 +208,9 @@ class HuggingchatRequester:
|
|
175 |
messages
|
176 |
)
|
177 |
|
|
|
|
|
|
|
178 |
self.get_hf_chat_id()
|
179 |
self.get_conversation_id(system_prompt=system_prompt)
|
180 |
message_id = self.get_last_message_id()
|
@@ -216,13 +252,6 @@ class HuggingchatStreamer:
|
|
216 |
self.model = "mixtral-8x7b"
|
217 |
self.model_fullname = MODEL_MAP[self.model]
|
218 |
self.message_outputer = OpenaiStreamOutputer(model=self.model)
|
219 |
-
# self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
|
220 |
-
|
221 |
-
# def count_tokens(self, text):
|
222 |
-
# tokens = self.tokenizer.encode(text)
|
223 |
-
# token_count = len(tokens)
|
224 |
-
# logger.note(f"Prompt Token Count: {token_count}")
|
225 |
-
# return token_count
|
226 |
|
227 |
def chat_response(self, messages: list[dict], verbose=False):
|
228 |
requester = HuggingchatRequester(model=self.model)
|
@@ -238,10 +267,11 @@ class HuggingchatStreamer:
|
|
238 |
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
-
# model = "
|
242 |
-
model = "
|
243 |
-
|
244 |
|
|
|
245 |
messages = [
|
246 |
{
|
247 |
"role": "system",
|
|
|
24 |
from messagers.message_composer import MessageComposer
|
25 |
|
26 |
|
27 |
+
class TokenChecker:
|
28 |
+
def __init__(self, input_str: str, model: str):
|
29 |
+
self.input_str = input_str
|
30 |
+
|
31 |
+
if model in MODEL_MAP.keys():
|
32 |
+
self.model = model
|
33 |
+
else:
|
34 |
+
self.model = "mixtral-8x7b"
|
35 |
+
|
36 |
+
self.model_fullname = MODEL_MAP[self.model]
|
37 |
+
|
38 |
+
if self.model == "llama3-70b":
|
39 |
+
# As original llama3 repo is gated and requires auth,
|
40 |
+
# I use NousResearch's version as a workaround
|
41 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
"NousResearch/Meta-Llama-3-70B"
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
|
46 |
+
|
47 |
+
def count_tokens(self):
|
48 |
+
token_count = len(self.tokenizer.encode(self.input_str))
|
49 |
+
logger.note(f"Prompt Token Count: {token_count}")
|
50 |
+
return token_count
|
51 |
+
|
52 |
+
def check_token_limit(self):
|
53 |
+
token_limit = TOKEN_LIMIT_MAP[self.model]
|
54 |
+
token_redundancy = int(token_limit - TOKEN_RESERVED - self.count_tokens())
|
55 |
+
if token_redundancy <= 0:
|
56 |
+
raise ValueError(f"Prompt exceeded token limit: {token_limit}")
|
57 |
+
return True
|
58 |
+
|
59 |
+
|
60 |
class HuggingchatRequester:
|
61 |
def __init__(self, model: str):
|
62 |
if model in MODEL_MAP.keys():
|
|
|
208 |
messages
|
209 |
)
|
210 |
|
211 |
+
checker = TokenChecker(input_str=system_prompt + input_prompt, model=self.model)
|
212 |
+
checker.check_token_limit()
|
213 |
+
|
214 |
self.get_hf_chat_id()
|
215 |
self.get_conversation_id(system_prompt=system_prompt)
|
216 |
message_id = self.get_last_message_id()
|
|
|
252 |
self.model = "mixtral-8x7b"
|
253 |
self.model_fullname = MODEL_MAP[self.model]
|
254 |
self.message_outputer = OpenaiStreamOutputer(model=self.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
def chat_response(self, messages: list[dict], verbose=False):
|
257 |
requester = HuggingchatRequester(model=self.model)
|
|
|
267 |
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
+
# model = "command-r-plus"
|
271 |
+
model = "llama3-70b"
|
272 |
+
# model = "zephyr-141b"
|
273 |
|
274 |
+
streamer = HuggingchatStreamer(model=model)
|
275 |
messages = [
|
276 |
{
|
277 |
"role": "system",
|