|
""" |
|
A model worker that executes the model based on LightLLM. |
|
|
|
See documentations at docs/lightllm_integration.md |
|
""" |
|
|
|
import argparse |
|
import asyncio |
|
import json |
|
import os |
|
import torch |
|
import uvicorn |
|
|
|
from transformers import AutoConfig |
|
|
|
from typing import List |
|
|
|
from fastapi import FastAPI, Request, BackgroundTasks |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
|
|
from fastchat.serve.base_model_worker import BaseModelWorker |
|
from fastchat.serve.model_worker import ( |
|
logger, |
|
worker_id, |
|
) |
|
|
|
from lightllm.server.sampling_params import SamplingParams |
|
from lightllm.server.multimodal_params import MultimodalParams |
|
from lightllm.server.httpserver.manager import HttpServerManager |
|
from lightllm.server.detokenization.manager import start_detokenization_process |
|
from lightllm.server.router.manager import start_router_process |
|
from lightllm.server.req_id_generator import ReqIDGenerator |
|
|
|
from lightllm.utils.net_utils import alloc_can_use_network_port |
|
from lightllm.utils.start_utils import start_submodule_processes |
|
from fastchat.utils import get_context_length, is_partial_stop |
|
|
|
app = FastAPI() |
|
g_id_gen = ReqIDGenerator() |
|
|
|
|
|
class LightLLMWorker(BaseModelWorker): |
|
def __init__( |
|
self, |
|
controller_addr: str, |
|
worker_addr: str, |
|
worker_id: str, |
|
model_path: str, |
|
model_names: List[str], |
|
limit_worker_concurrency: int, |
|
no_register: bool, |
|
conv_template: str, |
|
tokenizer, |
|
context_len, |
|
): |
|
super().__init__( |
|
controller_addr, |
|
worker_addr, |
|
worker_id, |
|
model_path, |
|
model_names, |
|
limit_worker_concurrency, |
|
conv_template, |
|
) |
|
|
|
logger.info( |
|
f"Loading the model {self.model_names} on worker {worker_id}, worker type: LightLLM worker..." |
|
) |
|
self.tokenizer = tokenizer |
|
self.context_len = context_len |
|
|
|
self.is_first = True |
|
|
|
if not no_register: |
|
self.init_heart_beat() |
|
|
|
async def generate_stream(self, params): |
|
self.call_ct += 1 |
|
|
|
prompt = params.pop("prompt") |
|
request_id = params.pop("request_id") |
|
temperature = float(params.get("temperature", 1.0)) |
|
top_p = float(params.get("top_p", 1.0)) |
|
top_k = params.get("top_k", -1.0) |
|
presence_penalty = float(params.get("presence_penalty", 0.0)) |
|
frequency_penalty = float(params.get("frequency_penalty", 0.0)) |
|
repetition_penalty = float(params.get("repetition_penalty", 1.0)) |
|
max_new_tokens = params.get("max_new_tokens", 256) |
|
echo = params.get("echo", True) |
|
stop_str = params.get("stop", None) |
|
stop_token_ids = params.get("stop_token_ids", None) or [] |
|
if self.tokenizer.eos_token_id is not None: |
|
stop_token_ids.append(self.tokenizer.eos_token_id) |
|
|
|
request = params.get("request", None) |
|
|
|
|
|
stop = set() |
|
if isinstance(stop_str, str) and stop_str != "": |
|
stop.add(stop_str) |
|
elif isinstance(stop_str, list) and stop_str != []: |
|
stop.update(stop_str) |
|
|
|
for tid in stop_token_ids: |
|
if tid is not None: |
|
s = self.tokenizer.decode(tid) |
|
if s != "": |
|
stop.add(s) |
|
|
|
if self.is_first: |
|
loop = asyncio.get_event_loop() |
|
loop.create_task(httpserver_manager.handle_loop()) |
|
self.is_first = False |
|
|
|
|
|
top_p = max(top_p, 1e-5) |
|
if temperature <= 1e-5: |
|
top_p = 1.0 |
|
|
|
sampling_params = SamplingParams( |
|
do_sample=temperature > 0.0, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
presence_penalty=presence_penalty, |
|
frequency_penalty=frequency_penalty, |
|
repetition_penalty=repetition_penalty, |
|
max_new_tokens=max_new_tokens, |
|
stop_sequences=list(stop), |
|
) |
|
sampling_params.verify() |
|
|
|
results_generator = httpserver_manager.generate( |
|
prompt, sampling_params, request_id, MultimodalParams() |
|
) |
|
|
|
completion_tokens = 0 |
|
text_outputs = "" |
|
cumulative_logprob = 0.0 |
|
|
|
async for request_output, metadata, finish_status in results_generator: |
|
text_outputs += request_output |
|
completion_tokens += 1 |
|
|
|
partial_stop = any(is_partial_stop(text_outputs, i) for i in stop) |
|
|
|
if partial_stop: |
|
continue |
|
|
|
if type(finish_status) is bool: |
|
finish_reason = "stop" if finish_status else None |
|
else: |
|
finish_reason = finish_status.get_finish_reason() |
|
|
|
if request and await request.is_disconnected(): |
|
await httpserver_manager.abort(request_id) |
|
finish_reason = "abort" |
|
|
|
logprob = metadata.get("logprob", None) |
|
if logprob is not None: |
|
cumulative_logprob += logprob |
|
|
|
prompt_tokens = metadata["prompt_tokens"] |
|
ret = { |
|
"text": prompt + text_outputs if echo else text_outputs, |
|
"error_code": 0, |
|
"usage": { |
|
"prompt_tokens": prompt_tokens, |
|
"completion_tokens": completion_tokens, |
|
"total_tokens": prompt_tokens + completion_tokens, |
|
}, |
|
"cumulative_logprob": cumulative_logprob, |
|
} |
|
|
|
if finish_reason is not None: |
|
yield ( |
|
json.dumps({**ret, "finish_reason": None}, ensure_ascii=False) |
|
+ "\0" |
|
).encode("utf-8") |
|
yield ( |
|
json.dumps({**ret, "finish_reason": finish_reason}, ensure_ascii=False) |
|
+ "\0" |
|
).encode("utf-8") |
|
|
|
if finish_reason is not None: |
|
break |
|
|
|
async def generate(self, params): |
|
async for x in self.generate_stream(params): |
|
pass |
|
return json.loads(x[:-1].decode()) |
|
|
|
|
|
def release_worker_semaphore(): |
|
worker.semaphore.release() |
|
|
|
|
|
def acquire_worker_semaphore(): |
|
if worker.semaphore is None: |
|
worker.semaphore = asyncio.Semaphore(worker.limit_worker_concurrency) |
|
return worker.semaphore.acquire() |
|
|
|
|
|
def create_background_tasks(request_id): |
|
async def abort_request() -> None: |
|
await httpserver_manager.abort(request_id) |
|
|
|
background_tasks = BackgroundTasks() |
|
background_tasks.add_task(release_worker_semaphore) |
|
background_tasks.add_task(abort_request) |
|
return background_tasks |
|
|
|
|
|
@app.post("/worker_generate_stream") |
|
async def api_generate_stream(request: Request): |
|
params = await request.json() |
|
await acquire_worker_semaphore() |
|
request_id = g_id_gen.generate_id() |
|
params["request_id"] = request_id |
|
params["request"] = request |
|
generator = worker.generate_stream(params) |
|
background_tasks = create_background_tasks(request_id) |
|
return StreamingResponse(generator, background=background_tasks) |
|
|
|
|
|
@app.post("/worker_generate") |
|
async def api_generate(request: Request): |
|
params = await request.json() |
|
await acquire_worker_semaphore() |
|
request_id = g_id_gen.generate_id() |
|
params["request_id"] = request_id |
|
params["request"] = request |
|
output = await worker.generate(params) |
|
release_worker_semaphore() |
|
await httpserver_manager.abort(request_id) |
|
return JSONResponse(output) |
|
|
|
|
|
@app.post("/worker_get_status") |
|
async def api_get_status(request: Request): |
|
return worker.get_status() |
|
|
|
|
|
@app.post("/count_token") |
|
async def api_count_token(request: Request): |
|
params = await request.json() |
|
return worker.count_token(params) |
|
|
|
|
|
@app.post("/worker_get_conv_template") |
|
async def api_get_conv(request: Request): |
|
return worker.get_conv_template() |
|
|
|
|
|
@app.post("/model_details") |
|
async def api_model_details(request: Request): |
|
return {"context_length": worker.context_len} |
|
|
|
|
|
if __name__ == "__main__": |
|
torch.multiprocessing.set_start_method("spawn") |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="127.0.0.1") |
|
parser.add_argument("--port", type=int, default=8000) |
|
|
|
parser.add_argument( |
|
"--model-path", |
|
dest="model_dir", |
|
type=str, |
|
default=None, |
|
help="the model weight dir path, the app will load config, weights and tokenizer from this dir", |
|
) |
|
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") |
|
parser.add_argument( |
|
"--controller-address", type=str, default="http://localhost:21001" |
|
) |
|
parser.add_argument( |
|
"--conv-template", type=str, default=None, help="Conversation prompt template." |
|
) |
|
parser.add_argument( |
|
"--model-names", |
|
type=lambda s: s.split(","), |
|
help="Optional display comma separated names", |
|
) |
|
parser.add_argument("--limit-worker-concurrency", type=int, default=1024) |
|
parser.add_argument("--no-register", action="store_true") |
|
|
|
parser.add_argument( |
|
"--tokenizer_mode", |
|
type=str, |
|
default="slow", |
|
help="""tokenizer load mode, can be slow or auto, slow mode load fast but run slow, slow mode is good for debug and test, |
|
when you want to get best performance, try auto mode""", |
|
) |
|
parser.add_argument( |
|
"--load_way", |
|
type=str, |
|
default="HF", |
|
help="the way of loading model weights, the default is HF(Huggingface format), llama also supports DS(Deepspeed)", |
|
) |
|
parser.add_argument( |
|
"--max_total_token_num", |
|
type=int, |
|
default=6000, |
|
help="the total token nums the gpu and model can support, equals = max_batch * (input_len + output_len)", |
|
) |
|
parser.add_argument( |
|
"--batch_max_tokens", |
|
type=int, |
|
default=None, |
|
help="max tokens num for new cat batch, it control prefill batch size to Preventing OOM", |
|
) |
|
parser.add_argument("--eos_id", type=int, default=2, help="eos stop token id") |
|
parser.add_argument( |
|
"--running_max_req_size", |
|
type=int, |
|
default=1000, |
|
help="the max size for forward requests in the same time", |
|
) |
|
parser.add_argument( |
|
"--tp", type=int, default=1, help="model tp parral size, the default is 1" |
|
) |
|
parser.add_argument( |
|
"--max_req_input_len", |
|
type=int, |
|
default=None, |
|
help="the max value for req input tokens num. If None, it will be derived from the config.", |
|
) |
|
parser.add_argument( |
|
"--max_req_total_len", |
|
type=int, |
|
default=None, |
|
help="the max value for req_input_len + req_output_len. If None, it will be derived from the config.", |
|
) |
|
parser.add_argument( |
|
"--mode", |
|
type=str, |
|
default=[], |
|
nargs="+", |
|
help="""Model mode: [triton_int8kv | ppl_int8kv | ppl_fp16 | triton_flashdecoding |
|
| triton_gqa_attention | triton_gqa_flashdecoding] |
|
[triton_int8weight | triton_int4weight | lmdeploy_int4weight | ppl_int4weight], |
|
triton_flashdecoding mode is for long context, current support llama llama2 qwen; |
|
triton_gqa_attention and triton_gqa_flashdecoding is fast kernel for model which use GQA; |
|
triton_int8kv mode use int8 to store kv cache, can increase token capacity, use triton kernel; |
|
ppl_int8kv mode use int8 to store kv cache, and use ppl fast kernel; |
|
ppl_fp16 mode use ppl fast fp16 decode attention kernel; |
|
triton_int8weight and triton_int4weight and lmdeploy_int4weight or ppl_int4weight mode use int8 and int4 to store weights; |
|
you need to read source code to make sure the supported detail mode for all models""", |
|
) |
|
parser.add_argument( |
|
"--trust_remote_code", |
|
action="store_true", |
|
help="Whether or not to allow for custom models defined on the Hub in their own modeling files.", |
|
) |
|
parser.add_argument( |
|
"--disable_log_stats", |
|
action="store_true", |
|
help="disable logging throughput stats.", |
|
) |
|
parser.add_argument( |
|
"--log_stats_interval", |
|
type=int, |
|
default=10, |
|
help="log stats interval in second.", |
|
) |
|
|
|
parser.add_argument( |
|
"--router_token_ratio", |
|
type=float, |
|
default=0.0, |
|
help="token ratio to control router dispatch", |
|
) |
|
parser.add_argument( |
|
"--router_max_new_token_len", |
|
type=int, |
|
default=1024, |
|
help="the request max new token len for router", |
|
) |
|
|
|
parser.add_argument( |
|
"--no_skipping_special_tokens", |
|
action="store_true", |
|
help="whether to skip special tokens when decoding", |
|
) |
|
parser.add_argument( |
|
"--no_spaces_between_special_tokens", |
|
action="store_true", |
|
help="whether to add spaces between special tokens when decoding", |
|
) |
|
|
|
parser.add_argument( |
|
"--splitfuse_mode", action="store_true", help="use splitfuse mode" |
|
) |
|
parser.add_argument( |
|
"--splitfuse_block_size", type=int, default=256, help="splitfuse block size" |
|
) |
|
parser.add_argument( |
|
"--prompt_cache_strs", |
|
type=str, |
|
default=[], |
|
nargs="+", |
|
help="""prompt cache strs""", |
|
) |
|
parser.add_argument( |
|
"--cache_capacity", |
|
type=int, |
|
default=200, |
|
help="cache server capacity for multimodal resources", |
|
) |
|
parser.add_argument( |
|
"--cache_reserved_ratio", |
|
type=float, |
|
default=0.5, |
|
help="cache server reserved capacity ratio after clear", |
|
) |
|
parser.add_argument( |
|
"--return_all_prompt_logprobs", |
|
action="store_true", |
|
help="return all prompt tokens logprobs", |
|
) |
|
parser.add_argument( |
|
"--long_truncation_mode", |
|
type=str, |
|
choices=[None, "head", "center"], |
|
default=None, |
|
help="""use to select the handle way when input token len > max_req_input_len. |
|
None : raise Exception |
|
head : remove some head tokens to make input token len <= max_req_input_len |
|
center : remove some tokens in center loc to make input token len <= max_req_input_len""", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if not args.splitfuse_mode: |
|
assert len(args.prompt_cache_strs) == 0 |
|
|
|
model_config = AutoConfig.from_pretrained(args.model_dir) |
|
context_length = get_context_length(model_config) |
|
|
|
if args.max_req_input_len is None: |
|
args.max_req_input_len = context_length - 1 |
|
if args.max_req_total_len is None: |
|
args.max_req_total_len = context_length |
|
|
|
assert args.max_req_input_len < args.max_req_total_len |
|
assert args.max_req_total_len <= args.max_total_token_num |
|
|
|
if not args.splitfuse_mode: |
|
|
|
if args.batch_max_tokens is None: |
|
batch_max_tokens = int(1 / 6 * args.max_total_token_num) |
|
batch_max_tokens = max(batch_max_tokens, args.max_req_total_len) |
|
args.batch_max_tokens = batch_max_tokens |
|
else: |
|
assert ( |
|
args.batch_max_tokens >= args.max_req_total_len |
|
), "batch_max_tokens must >= max_req_total_len" |
|
else: |
|
|
|
|
|
if args.batch_max_tokens is None: |
|
batch_max_tokens = int(1 / 6 * args.max_total_token_num) |
|
batch_max_tokens = max(batch_max_tokens, args.splitfuse_block_size) |
|
args.batch_max_tokens = batch_max_tokens |
|
|
|
can_use_ports = alloc_can_use_network_port(num=6 + args.tp) |
|
|
|
assert can_use_ports is not None, "Can not alloc enough free ports." |
|
( |
|
router_port, |
|
detokenization_port, |
|
httpserver_port, |
|
visual_port, |
|
cache_port, |
|
nccl_port, |
|
) = can_use_ports[0:6] |
|
args.nccl_port = nccl_port |
|
model_rpc_ports = can_use_ports[6:] |
|
|
|
global httpserver_manager |
|
httpserver_manager = HttpServerManager( |
|
args, |
|
router_port=router_port, |
|
cache_port=cache_port, |
|
visual_port=visual_port, |
|
httpserver_port=httpserver_port, |
|
enable_multimodal=False, |
|
) |
|
|
|
start_submodule_processes( |
|
start_funcs=[start_router_process, start_detokenization_process], |
|
start_args=[ |
|
(args, router_port, detokenization_port, model_rpc_ports), |
|
(args, detokenization_port, httpserver_port), |
|
], |
|
) |
|
worker = LightLLMWorker( |
|
args.controller_address, |
|
args.worker_address, |
|
worker_id, |
|
args.model_dir, |
|
args.model_names, |
|
args.limit_worker_concurrency, |
|
args.no_register, |
|
args.conv_template, |
|
httpserver_manager.tokenizer, |
|
context_length, |
|
) |
|
|
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|