File size: 17,366 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
"""
A model worker that executes the model based on LightLLM.

See documentations at docs/lightllm_integration.md
"""

import argparse
import asyncio
import json
import os
import torch
import uvicorn

from transformers import AutoConfig

from typing import List

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse

from fastchat.serve.base_model_worker import BaseModelWorker
from fastchat.serve.model_worker import (
    logger,
    worker_id,
)

from lightllm.server.sampling_params import SamplingParams
from lightllm.server.multimodal_params import MultimodalParams
from lightllm.server.httpserver.manager import HttpServerManager
from lightllm.server.detokenization.manager import start_detokenization_process
from lightllm.server.router.manager import start_router_process
from lightllm.server.req_id_generator import ReqIDGenerator

from lightllm.utils.net_utils import alloc_can_use_network_port
from lightllm.utils.start_utils import start_submodule_processes
from fastchat.utils import get_context_length, is_partial_stop

app = FastAPI()
g_id_gen = ReqIDGenerator()


class LightLLMWorker(BaseModelWorker):
    def __init__(
        self,
        controller_addr: str,
        worker_addr: str,
        worker_id: str,
        model_path: str,
        model_names: List[str],
        limit_worker_concurrency: int,
        no_register: bool,
        conv_template: str,
        tokenizer,
        context_len,
    ):
        super().__init__(
            controller_addr,
            worker_addr,
            worker_id,
            model_path,
            model_names,
            limit_worker_concurrency,
            conv_template,
        )

        logger.info(
            f"Loading the model {self.model_names} on worker {worker_id}, worker type: LightLLM worker..."
        )
        self.tokenizer = tokenizer
        self.context_len = context_len

        self.is_first = True

        if not no_register:
            self.init_heart_beat()

    async def generate_stream(self, params):
        self.call_ct += 1

        prompt = params.pop("prompt")
        request_id = params.pop("request_id")
        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        top_k = params.get("top_k", -1.0)
        presence_penalty = float(params.get("presence_penalty", 0.0))
        frequency_penalty = float(params.get("frequency_penalty", 0.0))
        repetition_penalty = float(params.get("repetition_penalty", 1.0))
        max_new_tokens = params.get("max_new_tokens", 256)
        echo = params.get("echo", True)
        stop_str = params.get("stop", None)
        stop_token_ids = params.get("stop_token_ids", None) or []
        if self.tokenizer.eos_token_id is not None:
            stop_token_ids.append(self.tokenizer.eos_token_id)

        request = params.get("request", None)

        # Handle stop_str
        stop = set()
        if isinstance(stop_str, str) and stop_str != "":
            stop.add(stop_str)
        elif isinstance(stop_str, list) and stop_str != []:
            stop.update(stop_str)

        for tid in stop_token_ids:
            if tid is not None:
                s = self.tokenizer.decode(tid)
                if s != "":
                    stop.add(s)

        if self.is_first:
            loop = asyncio.get_event_loop()
            loop.create_task(httpserver_manager.handle_loop())
            self.is_first = False

        # make sampling params in vllm
        top_p = max(top_p, 1e-5)
        if temperature <= 1e-5:
            top_p = 1.0

        sampling_params = SamplingParams(
            do_sample=temperature > 0.0,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            repetition_penalty=repetition_penalty,
            max_new_tokens=max_new_tokens,
            stop_sequences=list(stop),
        )
        sampling_params.verify()

        results_generator = httpserver_manager.generate(
            prompt, sampling_params, request_id, MultimodalParams()
        )

        completion_tokens = 0
        text_outputs = ""
        cumulative_logprob = 0.0

        async for request_output, metadata, finish_status in results_generator:
            text_outputs += request_output
            completion_tokens += 1

            partial_stop = any(is_partial_stop(text_outputs, i) for i in stop)
            # prevent yielding partial stop sequence
            if partial_stop:
                continue

            if type(finish_status) is bool:  # compatibility with old version
                finish_reason = "stop" if finish_status else None
            else:
                finish_reason = finish_status.get_finish_reason()

            if request and await request.is_disconnected():
                await httpserver_manager.abort(request_id)
                finish_reason = "abort"

            logprob = metadata.get("logprob", None)
            if logprob is not None:
                cumulative_logprob += logprob

            prompt_tokens = metadata["prompt_tokens"]
            ret = {
                "text": prompt + text_outputs if echo else text_outputs,
                "error_code": 0,
                "usage": {
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": prompt_tokens + completion_tokens,
                },
                "cumulative_logprob": cumulative_logprob,
            }

            if finish_reason is not None:
                yield (
                    json.dumps({**ret, "finish_reason": None}, ensure_ascii=False)
                    + "\0"
                ).encode("utf-8")
            yield (
                json.dumps({**ret, "finish_reason": finish_reason}, ensure_ascii=False)
                + "\0"
            ).encode("utf-8")

            if finish_reason is not None:  # In case of abort, we need to break the loop
                break

    async def generate(self, params):
        async for x in self.generate_stream(params):
            pass
        return json.loads(x[:-1].decode())


def release_worker_semaphore():
    worker.semaphore.release()


def acquire_worker_semaphore():
    if worker.semaphore is None:
        worker.semaphore = asyncio.Semaphore(worker.limit_worker_concurrency)
    return worker.semaphore.acquire()


def create_background_tasks(request_id):
    async def abort_request() -> None:
        await httpserver_manager.abort(request_id)

    background_tasks = BackgroundTasks()
    background_tasks.add_task(release_worker_semaphore)
    background_tasks.add_task(abort_request)
    return background_tasks


@app.post("/worker_generate_stream")
async def api_generate_stream(request: Request):
    params = await request.json()
    await acquire_worker_semaphore()
    request_id = g_id_gen.generate_id()
    params["request_id"] = request_id
    params["request"] = request
    generator = worker.generate_stream(params)
    background_tasks = create_background_tasks(request_id)
    return StreamingResponse(generator, background=background_tasks)


@app.post("/worker_generate")
async def api_generate(request: Request):
    params = await request.json()
    await acquire_worker_semaphore()
    request_id = g_id_gen.generate_id()
    params["request_id"] = request_id
    params["request"] = request
    output = await worker.generate(params)
    release_worker_semaphore()
    await httpserver_manager.abort(request_id)
    return JSONResponse(output)


@app.post("/worker_get_status")
async def api_get_status(request: Request):
    return worker.get_status()


@app.post("/count_token")
async def api_count_token(request: Request):
    params = await request.json()
    return worker.count_token(params)


@app.post("/worker_get_conv_template")
async def api_get_conv(request: Request):
    return worker.get_conv_template()


@app.post("/model_details")
async def api_model_details(request: Request):
    return {"context_length": worker.context_len}


if __name__ == "__main__":
    torch.multiprocessing.set_start_method("spawn")
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="127.0.0.1")
    parser.add_argument("--port", type=int, default=8000)

    parser.add_argument(
        "--model-path",
        dest="model_dir",
        type=str,
        default=None,
        help="the model weight dir path, the app will load config, weights and tokenizer from this dir",
    )
    parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
    parser.add_argument(
        "--controller-address", type=str, default="http://localhost:21001"
    )
    parser.add_argument(
        "--conv-template", type=str, default=None, help="Conversation prompt template."
    )
    parser.add_argument(
        "--model-names",
        type=lambda s: s.split(","),
        help="Optional display comma separated names",
    )
    parser.add_argument("--limit-worker-concurrency", type=int, default=1024)
    parser.add_argument("--no-register", action="store_true")

    parser.add_argument(
        "--tokenizer_mode",
        type=str,
        default="slow",
        help="""tokenizer load mode, can be slow or auto, slow mode load fast but run slow, slow mode is good for debug and test,
                        when you want to get best performance, try auto mode""",
    )
    parser.add_argument(
        "--load_way",
        type=str,
        default="HF",
        help="the way of loading model weights, the default is HF(Huggingface format), llama also supports DS(Deepspeed)",
    )
    parser.add_argument(
        "--max_total_token_num",
        type=int,
        default=6000,
        help="the total token nums the gpu and model can support, equals = max_batch * (input_len + output_len)",
    )
    parser.add_argument(
        "--batch_max_tokens",
        type=int,
        default=None,
        help="max tokens num for new cat batch, it control prefill batch size to Preventing OOM",
    )
    parser.add_argument("--eos_id", type=int, default=2, help="eos stop token id")
    parser.add_argument(
        "--running_max_req_size",
        type=int,
        default=1000,
        help="the max size for forward requests in the same time",
    )
    parser.add_argument(
        "--tp", type=int, default=1, help="model tp parral size, the default is 1"
    )
    parser.add_argument(
        "--max_req_input_len",
        type=int,
        default=None,
        help="the max value for req input tokens num. If None, it will be derived from the config.",
    )
    parser.add_argument(
        "--max_req_total_len",
        type=int,
        default=None,
        help="the max value for req_input_len + req_output_len. If None, it will be derived from the config.",
    )
    parser.add_argument(
        "--mode",
        type=str,
        default=[],
        nargs="+",
        help="""Model mode: [triton_int8kv | ppl_int8kv | ppl_fp16 | triton_flashdecoding
                        | triton_gqa_attention | triton_gqa_flashdecoding]
                        [triton_int8weight | triton_int4weight | lmdeploy_int4weight | ppl_int4weight],
                        triton_flashdecoding mode is for long context, current support llama llama2 qwen;
                        triton_gqa_attention and triton_gqa_flashdecoding is fast kernel for model which use GQA;
                        triton_int8kv mode use int8 to store kv cache, can increase token capacity, use triton kernel;
                        ppl_int8kv mode use int8 to store kv cache, and use ppl fast kernel;
                        ppl_fp16 mode use ppl fast fp16 decode attention kernel;
                        triton_int8weight and triton_int4weight and lmdeploy_int4weight or ppl_int4weight mode use int8 and int4 to store weights;
                        you need to read source code to make sure the supported detail mode for all models""",
    )
    parser.add_argument(
        "--trust_remote_code",
        action="store_true",
        help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
    )
    parser.add_argument(
        "--disable_log_stats",
        action="store_true",
        help="disable logging throughput stats.",
    )
    parser.add_argument(
        "--log_stats_interval",
        type=int,
        default=10,
        help="log stats interval in second.",
    )

    parser.add_argument(
        "--router_token_ratio",
        type=float,
        default=0.0,
        help="token ratio to control router dispatch",
    )
    parser.add_argument(
        "--router_max_new_token_len",
        type=int,
        default=1024,
        help="the request max new token len for router",
    )

    parser.add_argument(
        "--no_skipping_special_tokens",
        action="store_true",
        help="whether to skip special tokens when decoding",
    )
    parser.add_argument(
        "--no_spaces_between_special_tokens",
        action="store_true",
        help="whether to add spaces between special tokens when decoding",
    )

    parser.add_argument(
        "--splitfuse_mode", action="store_true", help="use splitfuse mode"
    )
    parser.add_argument(
        "--splitfuse_block_size", type=int, default=256, help="splitfuse block size"
    )
    parser.add_argument(
        "--prompt_cache_strs",
        type=str,
        default=[],
        nargs="+",
        help="""prompt cache strs""",
    )
    parser.add_argument(
        "--cache_capacity",
        type=int,
        default=200,
        help="cache server capacity for multimodal resources",
    )
    parser.add_argument(
        "--cache_reserved_ratio",
        type=float,
        default=0.5,
        help="cache server reserved capacity ratio after clear",
    )
    parser.add_argument(
        "--return_all_prompt_logprobs",
        action="store_true",
        help="return all prompt tokens logprobs",
    )
    parser.add_argument(
        "--long_truncation_mode",
        type=str,
        choices=[None, "head", "center"],
        default=None,
        help="""use to select the handle way when input token len > max_req_input_len.
                        None : raise Exception
                        head : remove some head tokens to make input token len <= max_req_input_len
                        center : remove some tokens in center loc to make input token len <= max_req_input_len""",
    )

    args = parser.parse_args()

    # 非splitfuse 模式,不支持 prompt cache 特性
    if not args.splitfuse_mode:
        assert len(args.prompt_cache_strs) == 0

    model_config = AutoConfig.from_pretrained(args.model_dir)
    context_length = get_context_length(model_config)

    if args.max_req_input_len is None:
        args.max_req_input_len = context_length - 1
    if args.max_req_total_len is None:
        args.max_req_total_len = context_length

    assert args.max_req_input_len < args.max_req_total_len
    assert args.max_req_total_len <= args.max_total_token_num

    if not args.splitfuse_mode:
        # 普通模式下
        if args.batch_max_tokens is None:
            batch_max_tokens = int(1 / 6 * args.max_total_token_num)
            batch_max_tokens = max(batch_max_tokens, args.max_req_total_len)
            args.batch_max_tokens = batch_max_tokens
        else:
            assert (
                args.batch_max_tokens >= args.max_req_total_len
            ), "batch_max_tokens must >= max_req_total_len"
    else:
        # splitfuse 模式下
        # assert args.batch_max_tokens is not None, "need to set by yourself"
        if args.batch_max_tokens is None:
            batch_max_tokens = int(1 / 6 * args.max_total_token_num)
            batch_max_tokens = max(batch_max_tokens, args.splitfuse_block_size)
            args.batch_max_tokens = batch_max_tokens

    can_use_ports = alloc_can_use_network_port(num=6 + args.tp)

    assert can_use_ports is not None, "Can not alloc enough free ports."
    (
        router_port,
        detokenization_port,
        httpserver_port,
        visual_port,
        cache_port,
        nccl_port,
    ) = can_use_ports[0:6]
    args.nccl_port = nccl_port
    model_rpc_ports = can_use_ports[6:]

    global httpserver_manager
    httpserver_manager = HttpServerManager(
        args,
        router_port=router_port,
        cache_port=cache_port,
        visual_port=visual_port,
        httpserver_port=httpserver_port,
        enable_multimodal=False,
    )

    start_submodule_processes(
        start_funcs=[start_router_process, start_detokenization_process],
        start_args=[
            (args, router_port, detokenization_port, model_rpc_ports),
            (args, detokenization_port, httpserver_port),
        ],
    )
    worker = LightLLMWorker(
        args.controller_address,
        args.worker_address,
        worker_id,
        args.model_dir,
        args.model_names,
        args.limit_worker_concurrency,
        args.no_register,
        args.conv_template,
        httpserver_manager.tokenizer,
        context_length,
    )

    uvicorn.run(app, host=args.host, port=args.port, log_level="info")