Whisper-WebUI / README.md
jhj0517
Update README.md
10a154c
|
raw
history blame
4.68 kB
# Whisper-WebUI
A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper). You can use it as an Easy Subtitle Generator!
![Whisper WebUI](https://github.com/jhj0517/Whsiper-WebUI/blob/master/screenshot.png)
## Notebook
If you wish to try this on Colab, you can do it in [here](https://colab.research.google.com/github/jhj0517/Whisper-WebUI/blob/master/notebook/whisper-webui.ipynb)!
# Feature
- Generate subtitles from various sources, including :
- Files
- Youtube
- Microphone
- Currently supported subtitle formats :
- SRT
- WebVTT
- txt ( only text file without timeline )
- Speech to Text Translation
- From other languages to English. ( This is Whisper's end-to-end speech-to-text translation feature )
- Text to Text Translation
- Translate subtitle files using Facebook NLLB models
- Translate subtitle files using DeepL API
# Installation and Running
- ## On Windows OS
### Prerequisite
To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10, `CUDA` version above 12.0 and `FFmpeg`.
Please follow the links below to install the necessary software:
- CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
- git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
- python : [https://www.python.org/downloads/](https://www.python.org/downloads/) **( If your python version is too new, torch will not install properly.)**
- FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!**
### Automatic Installation
If you have satisfied the prerequisites listed above, you are now ready to start Whisper-WebUI.
1. Run `Install.bat` from Windows Explorer as a regular, non-administrator user.
2. After installation, run the `start-webui.bat`.
3. Open your web browser and go to `http://localhost:7860`
( If you're running another Web-UI, it will be hosted on a different port , such as `localhost:7861`, `localhost:7862`, and so on )
And you can also run the project with command line arguments if you like by running `user-start-webui.bat`, see [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for a guide to arguments.
- ## Docker ( On Other OS )
1. Build the image
```sh
docker build -t whisper-webui:latest .
```
2. Run the container with commands
- For bash :
```sh
docker run --gpus all -d \
-v /path/to/models:/Whisper-WebUI/models \
-v /path/to/outputs:/Whisper-WebUI/outputs \
-p 7860:7860 \
-it \
whisper-webui:latest --server_name 0.0.0.0 --server_port 7860
```
- For PowerShell:
```shell
docker run --gpus all -d `
-v /path/to/models:/Whisper-WebUI/models `
-v /path/to/outputs:/Whisper-WebUI/outputs `
-p 7860:7860 `
-it `
whisper-webui:latest --server_name 0.0.0.0 --server_port 7860
```
# VRAM Usages
This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.
According to faster-whisper, the efficiency of the optimized whisper model is as follows:
| Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
|-------------------|-----------|-----------|-------|-----------------|-----------------|
| openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
| faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
If you want to use the original Open AI whisper implementation instead of optimized whisper, you can set the command line argument `--disable_faster_whisper` to `True`. See the [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for more information.
## Available models
This is Whisper's original VRAM usage table for models.
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
| base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
| small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
| medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
| large | 1550 M | N/A | `large` | ~10 GB | 1x |
`.en` models are for English only, and the cool thing is that you can use the `Translate to English` option from the "large" models!