Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import hashlib | |
import pathlib | |
import shlex | |
import subprocess | |
import tempfile | |
import gradio as gr | |
from omegaconf import OmegaConf | |
def get_exp_name(path: str) -> str: | |
with open(path, "rb") as f: | |
res = hashlib.md5(f.read()).hexdigest() | |
return res | |
def gen_feature_extraction_config(exp_name: str, init_image_path: str) -> str: | |
config = OmegaConf.load("plug-and-play/configs/pnp/feature-extraction-real.yaml") | |
config.config.experiment_name = exp_name | |
config.config.init_img = init_image_path | |
temp_file = tempfile.NamedTemporaryFile(suffix=".yaml", delete=False) | |
with open(temp_file.name, "w") as f: | |
f.write(OmegaConf.to_yaml(config)) | |
return temp_file.name | |
def run_feature_extraction_command(init_image_path: str) -> tuple[str, str]: | |
exp_name = get_exp_name(init_image_path) | |
if not pathlib.Path(f"plug-and-play/experiments/{exp_name}").exists(): | |
config_path = gen_feature_extraction_config(exp_name, init_image_path) | |
subprocess.run(shlex.split(f"python run_features_extraction.py --config {config_path}"), cwd="plug-and-play") | |
return f"plug-and-play/experiments/{exp_name}/samples/0.png", exp_name | |
def gen_pnp_config( | |
exp_name: str, | |
prompt: str, | |
guidance_scale: float, | |
ddim_steps: int, | |
feature_injection_threshold: int, | |
negative_prompt: str, | |
negative_prompt_alpha: float, | |
negative_prompt_schedule: str, | |
) -> str: | |
config = OmegaConf.load("plug-and-play/configs/pnp/pnp-real.yaml") | |
config.source_experiment_name = exp_name | |
config.prompts = [prompt] | |
config.scale = guidance_scale | |
config.num_ddim_sampling_steps = ddim_steps | |
config.feature_injection_threshold = feature_injection_threshold | |
config.negative_prompt = negative_prompt | |
config.negative_prompt_alpha = negative_prompt_alpha | |
config.negative_prompt_schedule = negative_prompt_schedule | |
temp_file = tempfile.NamedTemporaryFile(suffix=".yaml", delete=False) | |
with open(temp_file.name, "w") as f: | |
f.write(OmegaConf.to_yaml(config)) | |
return temp_file.name | |
def run_pnp_command( | |
exp_name: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float, | |
ddim_steps: int, | |
feature_injection_threshold: int, | |
negative_prompt_alpha: float, | |
negative_prompt_schedule: str, | |
) -> str: | |
config_path = gen_pnp_config( | |
exp_name, | |
prompt, | |
guidance_scale, | |
ddim_steps, | |
feature_injection_threshold, | |
negative_prompt, | |
negative_prompt_alpha, | |
negative_prompt_schedule, | |
) | |
subprocess.run(shlex.split(f"python run_pnp.py --config {config_path}"), cwd="plug-and-play") | |
out_dir = pathlib.Path( | |
f'plug-and-play/experiments/{exp_name}/translations/{guidance_scale}_{prompt.replace(" ", "_")}' | |
) | |
out_label = f'INJECTION_T_{feature_injection_threshold}_STEPS_{ddim_steps}_NP-ALPHA_{negative_prompt_alpha}_SCHEDULE_{negative_prompt_schedule}_NP_{negative_prompt.replace(" ", "_")}' | |
out_path = out_dir / f"{out_label}_sample_0.png" | |
return out_path.as_posix() | |
def process_example(image: str, translation_prompt: str, negative_prompt: str) -> tuple[str, str, str]: | |
reconstructed_image, exp_name = run_feature_extraction_command(image) | |
result = run_pnp_command( | |
exp_name, | |
translation_prompt, | |
negative_prompt, | |
guidance_scale=10, | |
ddim_steps=50, | |
feature_injection_threshold=40, | |
negative_prompt_alpha=1, | |
negative_prompt_schedule="linear", | |
) | |
return reconstructed_image, exp_name, result | |
def create_real_image_demo(): | |
with gr.Blocks() as demo: | |
with gr.Group(): | |
gr.Markdown("Step 1 (This step will take about 5 minutes on A10G.)") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Input image", type="filepath") | |
extract_feature_button = gr.Button("Reconstruct and extract features") | |
with gr.Column(): | |
reconstructed_image = gr.Image(label="Reconstructed image", type="filepath") | |
exp_name = gr.Text(visible=False) | |
with gr.Group(): | |
gr.Markdown("Step 2 (This step will take about 1.5 minutes on A10G.)") | |
with gr.Row(): | |
with gr.Column(): | |
translation_prompt = gr.Text(label="Prompt for translation") | |
negative_prompt = gr.Text(label="Negative prompt") | |
with gr.Accordion(label="Advanced settings", open=False): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=50, step=0.1, value=10) | |
ddim_steps = gr.Slider( | |
label="Number of inference steps", minimum=1, maximum=100, step=1, value=50 | |
) | |
feature_injection_threshold = gr.Slider( | |
label="Feature injection threshold", minimum=0, maximum=100, step=1, value=40 | |
) | |
negative_prompt_alpha = gr.Slider( | |
label="Negative prompt alpha", minimum=0, maximum=1, step=0.01, value=1 | |
) | |
negative_prompt_scheduler = gr.Dropdown( | |
label="Negative prompt schedule", choices=["linear", "constant", "exp"], value="linear" | |
) | |
generate_button = gr.Button("Generate") | |
with gr.Column(): | |
result = gr.Image(label="Result", type="filepath") | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
[ | |
"plug-and-play/data/horse.png", | |
"a photo of a robot horse", | |
"a photo of a white horse", | |
], | |
[ | |
"plug-and-play/data/horse.png", | |
"a photo of a bronze horse in a museum", | |
"a photo of a white horse", | |
], | |
[ | |
"plug-and-play/data/horse.png", | |
"a photo of a pink horse on the beach", | |
"a photo of a white horse", | |
], | |
], | |
inputs=[ | |
image, | |
translation_prompt, | |
negative_prompt, | |
], | |
outputs=[ | |
reconstructed_image, | |
exp_name, | |
result, | |
], | |
fn=process_example, | |
) | |
extract_feature_button.click( | |
fn=run_feature_extraction_command, | |
inputs=image, | |
outputs=[ | |
reconstructed_image, | |
exp_name, | |
], | |
) | |
generate_button.click( | |
fn=run_pnp_command, | |
inputs=[ | |
exp_name, | |
translation_prompt, | |
negative_prompt, | |
guidance_scale, | |
ddim_steps, | |
feature_injection_threshold, | |
negative_prompt_alpha, | |
negative_prompt_scheduler, | |
], | |
outputs=result, | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_real_image_demo() | |
demo.queue().launch() | |