Spaces:
Running
Running
File size: 7,491 Bytes
09ca579 469696e 09ca579 469696e b8bfb45 469696e 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 469696e b8bfb45 469696e b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 469696e b8bfb45 469696e 09ca579 1eacb01 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 469696e 1eacb01 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 b8bfb45 09ca579 469696e b8bfb45 469696e b8bfb45 469696e b8bfb45 469696e 09ca579 469696e 09ca579 469696e 09ca579 b8bfb45 09ca579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python
from __future__ import annotations
import hashlib
import pathlib
import shlex
import subprocess
import tempfile
import gradio as gr
from omegaconf import OmegaConf
def get_exp_name(path: str) -> str:
with open(path, "rb") as f:
res = hashlib.md5(f.read()).hexdigest()
return res
def gen_feature_extraction_config(exp_name: str, init_image_path: str) -> str:
config = OmegaConf.load("plug-and-play/configs/pnp/feature-extraction-real.yaml")
config.config.experiment_name = exp_name
config.config.init_img = init_image_path
temp_file = tempfile.NamedTemporaryFile(suffix=".yaml", delete=False)
with open(temp_file.name, "w") as f:
f.write(OmegaConf.to_yaml(config))
return temp_file.name
def run_feature_extraction_command(init_image_path: str) -> tuple[str, str]:
exp_name = get_exp_name(init_image_path)
if not pathlib.Path(f"plug-and-play/experiments/{exp_name}").exists():
config_path = gen_feature_extraction_config(exp_name, init_image_path)
subprocess.run(shlex.split(f"python run_features_extraction.py --config {config_path}"), cwd="plug-and-play")
return f"plug-and-play/experiments/{exp_name}/samples/0.png", exp_name
def gen_pnp_config(
exp_name: str,
prompt: str,
guidance_scale: float,
ddim_steps: int,
feature_injection_threshold: int,
negative_prompt: str,
negative_prompt_alpha: float,
negative_prompt_schedule: str,
) -> str:
config = OmegaConf.load("plug-and-play/configs/pnp/pnp-real.yaml")
config.source_experiment_name = exp_name
config.prompts = [prompt]
config.scale = guidance_scale
config.num_ddim_sampling_steps = ddim_steps
config.feature_injection_threshold = feature_injection_threshold
config.negative_prompt = negative_prompt
config.negative_prompt_alpha = negative_prompt_alpha
config.negative_prompt_schedule = negative_prompt_schedule
temp_file = tempfile.NamedTemporaryFile(suffix=".yaml", delete=False)
with open(temp_file.name, "w") as f:
f.write(OmegaConf.to_yaml(config))
return temp_file.name
def run_pnp_command(
exp_name: str,
prompt: str,
negative_prompt: str,
guidance_scale: float,
ddim_steps: int,
feature_injection_threshold: int,
negative_prompt_alpha: float,
negative_prompt_schedule: str,
) -> str:
config_path = gen_pnp_config(
exp_name,
prompt,
guidance_scale,
ddim_steps,
feature_injection_threshold,
negative_prompt,
negative_prompt_alpha,
negative_prompt_schedule,
)
subprocess.run(shlex.split(f"python run_pnp.py --config {config_path}"), cwd="plug-and-play")
out_dir = pathlib.Path(
f'plug-and-play/experiments/{exp_name}/translations/{guidance_scale}_{prompt.replace(" ", "_")}'
)
out_label = f'INJECTION_T_{feature_injection_threshold}_STEPS_{ddim_steps}_NP-ALPHA_{negative_prompt_alpha}_SCHEDULE_{negative_prompt_schedule}_NP_{negative_prompt.replace(" ", "_")}'
out_path = out_dir / f"{out_label}_sample_0.png"
return out_path.as_posix()
def process_example(image: str, translation_prompt: str, negative_prompt: str) -> tuple[str, str, str]:
reconstructed_image, exp_name = run_feature_extraction_command(image)
result = run_pnp_command(
exp_name,
translation_prompt,
negative_prompt,
guidance_scale=10,
ddim_steps=50,
feature_injection_threshold=40,
negative_prompt_alpha=1,
negative_prompt_schedule="linear",
)
return reconstructed_image, exp_name, result
def create_real_image_demo():
with gr.Blocks() as demo:
with gr.Group():
gr.Markdown("Step 1 (This step will take about 5 minutes on A10G.)")
with gr.Row():
with gr.Column():
image = gr.Image(label="Input image", type="filepath")
extract_feature_button = gr.Button("Reconstruct and extract features")
with gr.Column():
reconstructed_image = gr.Image(label="Reconstructed image", type="filepath")
exp_name = gr.Text(visible=False)
with gr.Group():
gr.Markdown("Step 2 (This step will take about 1.5 minutes on A10G.)")
with gr.Row():
with gr.Column():
translation_prompt = gr.Text(label="Prompt for translation")
negative_prompt = gr.Text(label="Negative prompt")
with gr.Accordion(label="Advanced settings", open=False):
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=50, step=0.1, value=10)
ddim_steps = gr.Slider(
label="Number of inference steps", minimum=1, maximum=100, step=1, value=50
)
feature_injection_threshold = gr.Slider(
label="Feature injection threshold", minimum=0, maximum=100, step=1, value=40
)
negative_prompt_alpha = gr.Slider(
label="Negative prompt alpha", minimum=0, maximum=1, step=0.01, value=1
)
negative_prompt_scheduler = gr.Dropdown(
label="Negative prompt schedule", choices=["linear", "constant", "exp"], value="linear"
)
generate_button = gr.Button("Generate")
with gr.Column():
result = gr.Image(label="Result", type="filepath")
with gr.Row():
gr.Examples(
examples=[
[
"plug-and-play/data/horse.png",
"a photo of a robot horse",
"a photo of a white horse",
],
[
"plug-and-play/data/horse.png",
"a photo of a bronze horse in a museum",
"a photo of a white horse",
],
[
"plug-and-play/data/horse.png",
"a photo of a pink horse on the beach",
"a photo of a white horse",
],
],
inputs=[
image,
translation_prompt,
negative_prompt,
],
outputs=[
reconstructed_image,
exp_name,
result,
],
fn=process_example,
)
extract_feature_button.click(
fn=run_feature_extraction_command,
inputs=image,
outputs=[
reconstructed_image,
exp_name,
],
)
generate_button.click(
fn=run_pnp_command,
inputs=[
exp_name,
translation_prompt,
negative_prompt,
guidance_scale,
ddim_steps,
feature_injection_threshold,
negative_prompt_alpha,
negative_prompt_scheduler,
],
outputs=result,
)
return demo
if __name__ == "__main__":
demo = create_real_image_demo()
demo.queue().launch()
|