Spaces:
Running
on
Zero
Running
on
Zero
how can i use huggingface Llama 2 api ? tell me step by step
#14
by
esiak
- opened
๐: how can i use huggingface Llama 2 api ? tell me step by step
๐ค: Hello! I'm glad you're interested in using the Hugging Face LLaMA API! Here's a step-by-step guide on how to use it:
- Install the LLaMA API:
You can install the LLaMA API using pip:pip install transformers
This will install the LLaMA library, which provides a simple and easy-to-use API for fine-tuning and using pre-trained language models. - Obtain a LLaMA API token:
To use the LLaMA API, you'll need to obtain a token. You can do this by creating an account on the Hugging Face GitHub page and obtaining a token from the "LLaMA API" repository. Once you have the token, you can use it to authenticate your API requests. - Set up the LLaMA API:
Once you have the token, you can set up the LLaMA API using the following code:
import torch
from transformers import LLaMAModel, LLaMATokenizer
# Set the API endpoint and token
endpoint = "https://api.huggingface.co/transformers/v1/models/llama-2"
token = "YOUR_TOKEN_HERE"
# Set up the LLaMA model and tokenizer
model = LLaMAModel.from_pretrained("llama-2")
tokenizer = LLaMATokenizer.from_pretrained("llama-2")
- Use the LLaMA API:
Now that you have the LLaMA API set up, you can use it to perform various NLP tasks. Here are some examples:
- Generating text:
You can use thegenerate
method of the LLaMA model to generate text. Here's an example:
text = model.generate(5, tokenizer=tokenizer)
# Print the generated text
print(text)
- Performing language translation:
You can use the translate
method of the LLaMA model to translate text from one language to another. Here's an example:
src_text = "Hello, how are you?"
tgt_text = "Bonjour, comment vas-tu?"
model.translate(src_text, tgt_text, tokenizer=tokenizer)
# Print the translated text
print(tgt_text)
- (Optional) Fine-tune the LLaMA model:
If you want to fine-tune the LLaMA model for a specific task, you can do so using theTrainingArguments
class. Here's an example:
from transformers import TrainingArguments
# Define the training arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
evaluation_strategy="epoch",
learning_rate=5e-5,
save_total_limit=2,
save_steps=500,
load_best_model_at_end=True,
metric_for_best_model="neg_mean_squared_error",
)
# Fine-tune the LLaMA model
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=lambda pred: {"neg_mean_squared_error": pred.last_hidden_state.shape[0]}
)
trainer.train()
These are the basic steps to use the Hugging Face LLaMA API. You can find more detailed documentation and examples in the Hugging Face API documentation.
Please let me know if you have any other questions!