Spaces:
Running
on
Zero
Running
on
Zero
depthanyvideo
commited on
Commit
•
0297809
1
Parent(s):
47ac829
update
Browse files- app.py +176 -143
- dav/utils/img_utils.py +27 -20
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
import
|
2 |
-
import logging
|
3 |
import os
|
|
|
|
|
4 |
import random
|
5 |
import tempfile
|
6 |
import time
|
7 |
-
|
8 |
from easydict import EasyDict
|
9 |
import numpy as np
|
10 |
import torch
|
@@ -24,11 +25,11 @@ def seed_all(seed: int = 0):
|
|
24 |
torch.cuda.manual_seed_all(seed)
|
25 |
|
26 |
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
|
31 |
-
# Load models once to avoid reloading on every inference
|
32 |
def load_models(model_base, device):
|
33 |
vae = AutoencoderKLTemporalDecoder.from_pretrained(model_base, subfolder="vae")
|
34 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
@@ -50,146 +51,178 @@ def load_models(model_base, device):
|
|
50 |
return pipe
|
51 |
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
pipe = load_models(MODEL_BASE, DEVICE)
|
58 |
|
59 |
|
60 |
@spaces.GPU(duration=140)
|
61 |
-
def
|
62 |
-
file,
|
63 |
-
denoise_steps=3,
|
64 |
-
num_frames=32,
|
65 |
-
decode_chunk_size=16,
|
66 |
-
num_interp_frames=16,
|
67 |
-
num_overlap_frames=6,
|
68 |
-
max_resolution=1024,
|
|
|
|
|
69 |
):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
-
|
|
|
|
1 |
+
import gc
|
|
|
2 |
import os
|
3 |
+
import spaces
|
4 |
+
import gradio as gr
|
5 |
import random
|
6 |
import tempfile
|
7 |
import time
|
8 |
+
|
9 |
from easydict import EasyDict
|
10 |
import numpy as np
|
11 |
import torch
|
|
|
25 |
torch.cuda.manual_seed_all(seed)
|
26 |
|
27 |
|
28 |
+
examples = [
|
29 |
+
["demos/wooly_mammoth.mp4", 3, 32, 16, 16, 6, 960],
|
30 |
+
]
|
31 |
|
32 |
|
|
|
33 |
def load_models(model_base, device):
|
34 |
vae = AutoencoderKLTemporalDecoder.from_pretrained(model_base, subfolder="vae")
|
35 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
|
|
51 |
return pipe
|
52 |
|
53 |
|
54 |
+
model_base = "hhyangcs/depth-any-video"
|
55 |
+
device_type = "cuda"
|
56 |
+
device = torch.device(device_type)
|
57 |
+
pipe = load_models(model_base, device)
|
|
|
58 |
|
59 |
|
60 |
@spaces.GPU(duration=140)
|
61 |
+
def infer_depth(
|
62 |
+
file: str,
|
63 |
+
denoise_steps: int = 3,
|
64 |
+
num_frames: int = 32,
|
65 |
+
decode_chunk_size: int = 16,
|
66 |
+
num_interp_frames: int = 16,
|
67 |
+
num_overlap_frames: int = 6,
|
68 |
+
max_resolution: int = 1024,
|
69 |
+
seed: int = 66,
|
70 |
+
output_dir: str = "./outputs",
|
71 |
):
|
72 |
+
seed_all(seed)
|
73 |
+
|
74 |
+
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (num_frames // 2)
|
75 |
+
image, fps = img_utils.read_video(file, max_frames=max_frames)
|
76 |
+
|
77 |
+
image = img_utils.imresize_max(image, max_resolution)
|
78 |
+
image = img_utils.imcrop_multi(image)
|
79 |
+
image_tensor = np.ascontiguousarray(
|
80 |
+
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
|
81 |
+
)
|
82 |
+
image_tensor = torch.from_numpy(image_tensor).to(device)
|
83 |
+
print(f"==> video name: {file}, frames shape: {image_tensor.shape}")
|
84 |
+
|
85 |
+
with torch.no_grad(), torch.autocast(device_type=device_type, dtype=torch.float16):
|
86 |
+
pipe_out = pipe(
|
87 |
+
image_tensor,
|
88 |
+
num_frames=num_frames,
|
89 |
+
num_overlap_frames=num_overlap_frames,
|
90 |
+
num_interp_frames=num_interp_frames,
|
91 |
+
decode_chunk_size=decode_chunk_size,
|
92 |
+
num_inference_steps=denoise_steps,
|
93 |
+
)
|
94 |
+
|
95 |
+
disparity = pipe_out.disparity
|
96 |
+
disparity_colored = pipe_out.disparity_colored
|
97 |
+
image = pipe_out.image
|
98 |
+
# (N, H, 2 * W, 3)
|
99 |
+
merged = np.concatenate(
|
100 |
+
[
|
101 |
+
image,
|
102 |
+
disparity_colored,
|
103 |
+
],
|
104 |
+
axis=2,
|
105 |
+
)
|
106 |
+
|
107 |
+
file_name = os.path.splitext(os.path.basename(file))[0]
|
108 |
+
os.makedirs(output_dir, exist_ok=True)
|
109 |
+
output_path = os.path.join(output_dir, f"{file_name}_depth.mp4")
|
110 |
+
img_utils.write_video(
|
111 |
+
output_path,
|
112 |
+
merged,
|
113 |
+
fps,
|
114 |
+
)
|
115 |
+
|
116 |
+
# clear the cache for the next video
|
117 |
+
gc.collect()
|
118 |
+
torch.cuda.empty_cache()
|
119 |
+
|
120 |
+
return output_path
|
121 |
+
|
122 |
+
|
123 |
+
def construct_demo():
|
124 |
+
with gr.Blocks(analytics_enabled=False) as depthanyvideo_iface:
|
125 |
+
|
126 |
+
with gr.Row(equal_height=True):
|
127 |
+
with gr.Column(scale=1):
|
128 |
+
input_video = gr.Video(label="Input Video")
|
129 |
+
|
130 |
+
with gr.Column(scale=1):
|
131 |
+
with gr.Row(equal_height=True):
|
132 |
+
output_video = gr.Video(
|
133 |
+
label="Ouput Video Depth",
|
134 |
+
interactive=False,
|
135 |
+
autoplay=True,
|
136 |
+
loop=True,
|
137 |
+
show_share_button=True,
|
138 |
+
scale=1,
|
139 |
+
)
|
140 |
+
|
141 |
+
with gr.Row(equal_height=True):
|
142 |
+
with gr.Column(scale=1):
|
143 |
+
with gr.Row(equal_height=False):
|
144 |
+
with gr.Accordion("Advanced Settings", open=False):
|
145 |
+
denoise_steps = gr.Slider(
|
146 |
+
label="Denoise Steps",
|
147 |
+
minimum=1,
|
148 |
+
maximum=10,
|
149 |
+
value=3,
|
150 |
+
step=1,
|
151 |
+
)
|
152 |
+
num_frames = gr.Slider(
|
153 |
+
label="Number of Key Frames",
|
154 |
+
minimum=16,
|
155 |
+
maximum=32,
|
156 |
+
value=24,
|
157 |
+
step=2,
|
158 |
+
)
|
159 |
+
decode_chunk_size = gr.Slider(
|
160 |
+
label="Decode Chunk Size",
|
161 |
+
minimum=8,
|
162 |
+
maximum=32,
|
163 |
+
value=16,
|
164 |
+
step=1,
|
165 |
+
)
|
166 |
+
num_interp_frames = gr.Slider(
|
167 |
+
label="Number of Interpolation Frames",
|
168 |
+
minimum=8,
|
169 |
+
maximum=32,
|
170 |
+
value=16,
|
171 |
+
step=1,
|
172 |
+
)
|
173 |
+
num_overlap_frames = gr.Slider(
|
174 |
+
label="Number of Overlap Frames",
|
175 |
+
minimum=2,
|
176 |
+
maximum=10,
|
177 |
+
value=6,
|
178 |
+
step=1,
|
179 |
+
)
|
180 |
+
max_resolution = gr.Slider(
|
181 |
+
label="Maximum Resolution",
|
182 |
+
minimum=512,
|
183 |
+
maximum=2048,
|
184 |
+
value=1024,
|
185 |
+
step=32,
|
186 |
+
)
|
187 |
+
generate_btn = gr.Button("Generate")
|
188 |
+
with gr.Column(scale=2):
|
189 |
+
pass
|
190 |
+
|
191 |
+
gr.Examples(
|
192 |
+
examples=examples,
|
193 |
+
inputs=[
|
194 |
+
input_video,
|
195 |
+
denoise_steps,
|
196 |
+
num_frames,
|
197 |
+
decode_chunk_size,
|
198 |
+
num_interp_frames,
|
199 |
+
num_overlap_frames,
|
200 |
+
max_resolution,
|
201 |
+
],
|
202 |
+
outputs=output_video,
|
203 |
+
fn=infer_depth,
|
204 |
+
cache_examples="lazy",
|
205 |
+
)
|
206 |
+
|
207 |
+
generate_btn.click(
|
208 |
+
fn=infer_depth,
|
209 |
+
inputs=[
|
210 |
+
input_video,
|
211 |
+
denoise_steps,
|
212 |
+
num_frames,
|
213 |
+
decode_chunk_size,
|
214 |
+
num_interp_frames,
|
215 |
+
num_overlap_frames,
|
216 |
+
max_resolution,
|
217 |
+
],
|
218 |
+
outputs=output_video,
|
219 |
+
)
|
220 |
+
|
221 |
+
return depthanyvideo_iface
|
222 |
+
|
223 |
+
|
224 |
+
demo = construct_demo()
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
+
demo.queue()
|
228 |
+
demo.launch(share=True)
|
dav/utils/img_utils.py
CHANGED
@@ -85,26 +85,33 @@ def read_image(image_path):
|
|
85 |
|
86 |
|
87 |
def write_video(video_path, frames, fps):
|
88 |
-
tmp_dir = os.path.join(os.path.dirname(video_path), "tmp")
|
89 |
-
os.makedirs(tmp_dir, exist_ok=True)
|
90 |
-
for i, frame in enumerate(frames):
|
91 |
-
|
92 |
-
# it will cause visual compression artifacts
|
93 |
-
ffmpeg_command = [
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
]
|
106 |
-
os.system(" ".join(ffmpeg_command))
|
107 |
-
os.system(f"rm -rf {tmp_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
def write_image(image_path, frame):
|
|
|
85 |
|
86 |
|
87 |
def write_video(video_path, frames, fps):
|
88 |
+
# tmp_dir = os.path.join(os.path.dirname(video_path), "tmp")
|
89 |
+
# os.makedirs(tmp_dir, exist_ok=True)
|
90 |
+
# for i, frame in enumerate(frames):
|
91 |
+
# write_image(os.path.join(tmp_dir, f"{i:06d}.png"), frame)
|
92 |
+
# # it will cause visual compression artifacts
|
93 |
+
# ffmpeg_command = [
|
94 |
+
# "ffmpeg",
|
95 |
+
# "-f",
|
96 |
+
# "image2",
|
97 |
+
# "-framerate",
|
98 |
+
# f"{fps}",
|
99 |
+
# "-i",
|
100 |
+
# os.path.join(tmp_dir, "%06d.png"),
|
101 |
+
# "-b:v",
|
102 |
+
# "5626k",
|
103 |
+
# "-y",
|
104 |
+
# video_path,
|
105 |
+
# ]
|
106 |
+
# os.system(" ".join(ffmpeg_command))
|
107 |
+
# os.system(f"rm -rf {tmp_dir}")
|
108 |
+
h, w = frames[0].shape[:2]
|
109 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
110 |
+
out = cv2.VideoWriter(video_path, fourcc, fps, (w, h))
|
111 |
+
for frame in frames:
|
112 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
113 |
+
out.write(frame)
|
114 |
+
out.release()
|
115 |
|
116 |
|
117 |
def write_image(image_path, frame):
|