Spaces:
Running
on
Zero
Running
on
Zero
depthanyvideo
commited on
Commit
•
47ac829
1
Parent(s):
4be2365
update
Browse files
app.py
CHANGED
@@ -70,98 +70,99 @@ def depth_any_video(
|
|
70 |
"""
|
71 |
Perform depth estimation on the uploaded video/image.
|
72 |
"""
|
73 |
-
with
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
seed_all(cfg.seed)
|
100 |
-
|
101 |
-
file_name = os.path.splitext(os.path.basename(cfg.data_path))[0]
|
102 |
-
is_video = cfg.data_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv"))
|
103 |
-
|
104 |
-
if is_video:
|
105 |
-
num_interp_frames = cfg.num_interp_frames
|
106 |
-
num_overlap_frames = cfg.num_overlap_frames
|
107 |
-
num_frames = cfg.num_frames
|
108 |
-
assert num_frames % 2 == 0, "num_frames should be even."
|
109 |
-
assert (
|
110 |
-
2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
|
111 |
-
), "Invalid frame overlap."
|
112 |
-
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (
|
113 |
-
num_frames // 2
|
114 |
-
)
|
115 |
-
image, fps = img_utils.read_video(cfg.data_path, max_frames=max_frames)
|
116 |
-
else:
|
117 |
-
image = img_utils.read_image(cfg.data_path)
|
118 |
-
|
119 |
-
image = img_utils.imresize_max(image, cfg.max_resolution)
|
120 |
-
image = img_utils.imcrop_multi(image)
|
121 |
-
image_tensor = np.ascontiguousarray(
|
122 |
-
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
|
123 |
-
)
|
124 |
-
image_tensor = torch.from_numpy(image_tensor).to(DEVICE)
|
125 |
-
|
126 |
-
with torch.no_grad(), torch.autocast(
|
127 |
-
device_type=DEVICE_TYPE, dtype=torch.float16
|
128 |
-
):
|
129 |
-
pipe_out = pipe(
|
130 |
-
image_tensor,
|
131 |
-
num_frames=cfg.num_frames,
|
132 |
-
num_overlap_frames=cfg.num_overlap_frames,
|
133 |
-
num_interp_frames=cfg.num_interp_frames,
|
134 |
-
decode_chunk_size=cfg.decode_chunk_size,
|
135 |
-
num_inference_steps=cfg.denoise_steps,
|
136 |
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
)
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
)
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
|
167 |
# Define Gradio interface
|
|
|
70 |
"""
|
71 |
Perform depth estimation on the uploaded video/image.
|
72 |
"""
|
73 |
+
with open(file, "rb") as _file:
|
74 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
75 |
+
# Save the uploaded file
|
76 |
+
input_path = os.path.join(tmp_dir, file.name)
|
77 |
+
with open(input_path, "wb") as f:
|
78 |
+
f.write(_file.read())
|
79 |
+
|
80 |
+
# Set up output directory
|
81 |
+
output_dir = os.path.join(tmp_dir, "output")
|
82 |
+
os.makedirs(output_dir, exist_ok=True)
|
83 |
+
|
84 |
+
# Prepare configuration
|
85 |
+
cfg = EasyDict(
|
86 |
+
{
|
87 |
+
"model_base": MODEL_BASE,
|
88 |
+
"data_path": input_path,
|
89 |
+
"output_dir": output_dir,
|
90 |
+
"denoise_steps": denoise_steps,
|
91 |
+
"num_frames": num_frames,
|
92 |
+
"decode_chunk_size": decode_chunk_size,
|
93 |
+
"num_interp_frames": num_interp_frames,
|
94 |
+
"num_overlap_frames": num_overlap_frames,
|
95 |
+
"max_resolution": max_resolution,
|
96 |
+
"seed": 666,
|
97 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
100 |
+
seed_all(cfg.seed)
|
101 |
+
|
102 |
+
file_name = os.path.splitext(os.path.basename(cfg.data_path))[0]
|
103 |
+
is_video = cfg.data_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv"))
|
104 |
+
|
105 |
+
if is_video:
|
106 |
+
num_interp_frames = cfg.num_interp_frames
|
107 |
+
num_overlap_frames = cfg.num_overlap_frames
|
108 |
+
num_frames = cfg.num_frames
|
109 |
+
assert num_frames % 2 == 0, "num_frames should be even."
|
110 |
+
assert (
|
111 |
+
2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
|
112 |
+
), "Invalid frame overlap."
|
113 |
+
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (
|
114 |
+
num_frames // 2
|
115 |
+
)
|
116 |
+
image, fps = img_utils.read_video(cfg.data_path, max_frames=max_frames)
|
117 |
+
else:
|
118 |
+
image = img_utils.read_image(cfg.data_path)
|
119 |
+
|
120 |
+
image = img_utils.imresize_max(image, cfg.max_resolution)
|
121 |
+
image = img_utils.imcrop_multi(image)
|
122 |
+
image_tensor = np.ascontiguousarray(
|
123 |
+
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
|
124 |
)
|
125 |
+
image_tensor = torch.from_numpy(image_tensor).to(DEVICE)
|
126 |
+
|
127 |
+
with torch.no_grad(), torch.autocast(
|
128 |
+
device_type=DEVICE_TYPE, dtype=torch.float16
|
129 |
+
):
|
130 |
+
pipe_out = pipe(
|
131 |
+
image_tensor,
|
132 |
+
num_frames=cfg.num_frames,
|
133 |
+
num_overlap_frames=cfg.num_overlap_frames,
|
134 |
+
num_interp_frames=cfg.num_interp_frames,
|
135 |
+
decode_chunk_size=cfg.decode_chunk_size,
|
136 |
+
num_inference_steps=cfg.denoise_steps,
|
137 |
+
)
|
138 |
+
|
139 |
+
disparity = pipe_out.disparity
|
140 |
+
disparity_colored = pipe_out.disparity_colored
|
141 |
+
image = pipe_out.image
|
142 |
+
# (N, H, 2 * W, 3)
|
143 |
+
merged = np.concatenate(
|
144 |
+
[
|
145 |
+
image,
|
146 |
+
disparity_colored,
|
147 |
+
],
|
148 |
+
axis=2,
|
149 |
)
|
150 |
+
|
151 |
+
if is_video:
|
152 |
+
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.mp4")
|
153 |
+
img_utils.write_video(
|
154 |
+
output_path,
|
155 |
+
merged,
|
156 |
+
fps,
|
157 |
+
)
|
158 |
+
return output_path
|
159 |
+
else:
|
160 |
+
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.png")
|
161 |
+
img_utils.write_image(
|
162 |
+
output_path,
|
163 |
+
merged[0],
|
164 |
+
)
|
165 |
+
return output_path
|
166 |
|
167 |
|
168 |
# Define Gradio interface
|