whisper-v3-zero / app.py
suisuyy
add status
a1dd53c
raw
history blame
6.3 kB
import torch
import time
import moviepy.editor as mp
import psutil
import gradio as gr
import spaces
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
if device == "cpu":
DEFAULT_MODEL_NAME = "openai/whisper-tiny"
def load_pipeline(model_name):
return pipeline(
task="automatic-speech-recognition",
model=model_name,
chunk_length_s=30,
device=device,
)
pipe = load_pipeline(DEFAULT_MODEL_NAME)
@spaces.GPU
def transcribe(inputs, task, model_name):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
global pipe
if model_name != pipe.model.name_or_path:
pipe = load_pipeline(model_name)
start_time = time.time() # Record the start time
# Load the audio file and calculate its duration
audio = mp.AudioFileClip(inputs)
audio_duration = audio.duration
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
end_time = time.time() # Record the end time
transcription_time = end_time - start_time # Calculate the transcription time
# Create the transcription time output with additional information
transcription_time_output = (
f"Transcription Time: {transcription_time:.2f} seconds\n"
f"Audio Duration: {audio_duration:.2f} seconds\n"
f"Model Used: {model_name}\n"
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
)
return text, transcription_time_output
from gpustat import GPUStatCollection
def update_gpu_status():
if torch.cuda.is_available() == False:
return "No Nviadia Device"
try:
gpu_stats = GPUStatCollection.new_query()
for gpu in gpu_stats:
# Assuming you want to monitor the first GPU, index 0
gpu_id = gpu.index
gpu_name = gpu.name
gpu_utilization = gpu.utilization
memory_used = gpu.memory_used
memory_total = gpu.memory_total
memory_utilization = (memory_used / memory_total) * 100
gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
return gpu_status
except Exception as e:
print(f"Error getting GPU stats: {e}")
# def update_gpu_status():
# if torch.cuda.is_available():
# gpu_info = torch.cuda.get_device_name(0)
# gpu_memory = torch.cuda.mem_get_info(0)
# total_memory = gpu_memory[1] / (1024 * 1024)
# used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
# gpu_status = f"GPU: {gpu_info}\nTotal Memory: {total_memory:.2f} MB\nUsed Memory: {used_memory:.2f} MB"
# else:
# gpu_status = "No GPU available"
# return gpu_status
def update_cpu_status():
import datetime
# Get the current time
current_time = datetime.datetime.now().time()
# Convert the time to a string
time_str = current_time.strftime("%H:%M:%S")
cpu_percent = psutil.cpu_percent()
cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
return cpu_status
def update_status():
gpu_status = update_gpu_status()
cpu_status = update_cpu_status()
return gpu_status, cpu_status
def refresh_status():
return update_status()
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
placeholder="Enter the model name",
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
),
],
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
theme="huggingface",
title="Whisper Transcription",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
placeholder="Enter the model name",
info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2",
),
],
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
theme="huggingface",
title="Whisper Transcription",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
with gr.Row():
refresh_button = gr.Button("Refresh Status") # Create a refresh button
gpu_status_output = gr.Textbox(label="GPU Status", interactive=False)
cpu_status_output = gr.Textbox(label="CPU Status", interactive=False)
# Link the refresh button to the refresh_status function
refresh_button.click(refresh_status, None, [gpu_status_output, cpu_status_output])
# Load the initial status using update_status function
demo.load(update_status, inputs=None, outputs=[gpu_status_output, cpu_status_output], every=2, queue=False)
# Launch the Gradio app
demo.launch(share=True)