File size: 6,299 Bytes
9ba2a1c
7233e3e
a1dd53c
 
a67942c
d4961b6
9ba2a1c
 
 
fbe6007
9ba2a1c
 
 
a1dd53c
 
9ba2a1c
7233e3e
 
 
 
 
 
 
 
 
a67942c
d4961b6
7233e3e
9ba2a1c
 
a67942c
7233e3e
 
 
 
 
a1dd53c
 
 
 
 
9ba2a1c
7233e3e
a67942c
7233e3e
9ba2a1c
7233e3e
 
 
a1dd53c
7233e3e
 
9ba2a1c
 
7233e3e
9ba2a1c
a1dd53c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba2a1c
 
 
 
 
bee3039
dd48e3a
7233e3e
 
 
 
a1dd53c
7233e3e
9ba2a1c
7233e3e
9ba2a1c
7233e3e
9ba2a1c
7233e3e
 
9ba2a1c
 
 
 
 
 
 
bee3039
dd48e3a
7233e3e
 
 
 
a1dd53c
7233e3e
9ba2a1c
7233e3e
9ba2a1c
7233e3e
9ba2a1c
7233e3e
 
9ba2a1c
 
 
 
7233e3e
a1dd53c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import time
import moviepy.editor as mp
import psutil
import gradio as gr
import spaces
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
BATCH_SIZE = 8

device = 0 if torch.cuda.is_available() else "cpu"
if device == "cpu":
    DEFAULT_MODEL_NAME = "openai/whisper-tiny"

def load_pipeline(model_name):
    return pipeline(
        task="automatic-speech-recognition",
        model=model_name,
        chunk_length_s=30,
        device=device,
    )

pipe = load_pipeline(DEFAULT_MODEL_NAME)

@spaces.GPU
def transcribe(inputs, task, model_name):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    global pipe
    if model_name != pipe.model.name_or_path:
        pipe = load_pipeline(model_name)

    start_time = time.time()  # Record the start time

    # Load the audio file and calculate its duration
    audio = mp.AudioFileClip(inputs)
    audio_duration = audio.duration

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    end_time = time.time()  # Record the end time

    transcription_time = end_time - start_time  # Calculate the transcription time

    # Create the transcription time output with additional information
    transcription_time_output = (
        f"Transcription Time: {transcription_time:.2f} seconds\n"
        f"Audio Duration: {audio_duration:.2f} seconds\n"
        f"Model Used: {model_name}\n"
        f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
    )

    return text, transcription_time_output

from gpustat import GPUStatCollection

def update_gpu_status():
    if torch.cuda.is_available() == False:
        return "No Nviadia Device"
    try:
        gpu_stats = GPUStatCollection.new_query()
        for gpu in gpu_stats:
            # Assuming you want to monitor the first GPU, index 0
            gpu_id = gpu.index
            gpu_name = gpu.name
            gpu_utilization = gpu.utilization
            memory_used = gpu.memory_used
            memory_total = gpu.memory_total
            memory_utilization = (memory_used / memory_total) * 100
            gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
            return gpu_status

    except Exception as e:
        print(f"Error getting GPU stats: {e}")

# def update_gpu_status():
#     if torch.cuda.is_available():
#         gpu_info = torch.cuda.get_device_name(0)
#         gpu_memory = torch.cuda.mem_get_info(0)
#         total_memory = gpu_memory[1] / (1024 * 1024)
#         used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
        
#         gpu_status = f"GPU: {gpu_info}\nTotal Memory: {total_memory:.2f} MB\nUsed Memory: {used_memory:.2f} MB"
#     else:
#         gpu_status = "No GPU available"
#     return gpu_status

def update_cpu_status():
    import datetime
    # Get the current time
    current_time = datetime.datetime.now().time()
    # Convert the time to a string
    time_str = current_time.strftime("%H:%M:%S")

    cpu_percent = psutil.cpu_percent()
    cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
    return cpu_status

def update_status():
    gpu_status = update_gpu_status()
    cpu_status = update_cpu_status()
    return gpu_status, cpu_status

def refresh_status():
    return update_status()

demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
        gr.Textbox(
            label="Model Name",
            value=DEFAULT_MODEL_NAME,
            placeholder="Enter the model name",
            info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
        ),
    ],
    outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
    theme="huggingface",
    title="Whisper Transcription",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
        " checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
        gr.Textbox(
            label="Model Name",
            value=DEFAULT_MODEL_NAME,
            placeholder="Enter the model name",
            info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2",
        ),
    ],
    outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
    theme="huggingface",
    title="Whisper Transcription",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
        " checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
    ),
    allow_flagging="never",
)
with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
    
    with gr.Row():
        refresh_button = gr.Button("Refresh Status")  # Create a refresh button
    
    gpu_status_output = gr.Textbox(label="GPU Status", interactive=False)
    cpu_status_output = gr.Textbox(label="CPU Status", interactive=False)
    
    # Link the refresh button to the refresh_status function
    refresh_button.click(refresh_status, None, [gpu_status_output, cpu_status_output])

    # Load the initial status using update_status function
    demo.load(update_status, inputs=None, outputs=[gpu_status_output, cpu_status_output], every=2, queue=False)

# Launch the Gradio app
demo.launch(share=True)