File size: 3,770 Bytes
238cf85
 
cbc7533
 
 
 
238cf85
cbc7533
238cf85
cbc7533
 
 
238cf85
cbc7533
 
 
 
 
 
238cf85
 
cbc7533
238cf85
cbc7533
 
 
238cf85
 
cbc7533
238cf85
 
 
 
 
 
 
 
cbc7533
 
238cf85
cbc7533
238cf85
cbc7533
 
 
 
238cf85
 
cbc7533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238cf85
cbc7533
 
 
 
 
238cf85
cbc7533
238cf85
cbc7533
 
238cf85
 
cbc7533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238cf85
cbc7533
 
 
238cf85
 
cbc7533
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from diffusers import StableDiffusionPipeline

# Setup the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/sdxl-turbo"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
pipe = pipe.to(device)

# Generate T-shirt design function
def generate_tshirt_design(style, color, graphics, text=None):
    prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}"
    if text:
        prompt += f", text: {text}"
    image = pipe(prompt).images[0]
    return image

# T-shirt mockup generator with Gradio interface
examples = [
    ["Casual", "White", "Logo: MyBrand", None],
    ["Formal", "Black", "Text: Hello World", "Custom text"],
    ["Sports", "Red", "Graphic: Team logo", None],
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # T-shirt Mockup Generator with Rookus AI
        """)

        with gr.Row():
            style = gr.Dropdown(
                label="T-shirt Style",
                choices=["Casual", "Formal", "Sports"],
                value="Casual",
                container=False,
            )

            run_button = gr.Button("Generate Mockup", scale=0)

        result = gr.Image(label="Mockup", show_label=False)

        with gr.Accordion("Design Options", open=False):
            color = gr.Radio(
                label="T-shirt Color",
                choices=["White", "Black", "Blue", "Red", "Green"],
                value="White",
            )

            graphics = gr.Textbox(
                label="Graphics/Logo",
                placeholder="Enter graphics or logo details",
                visible=True,
            )

            text = gr.Textbox(
                label="Text (optional)",
                placeholder="Enter optional text",
                visible=True,
            )

        gr.Examples(
            examples=examples,
            inputs=[style, color, graphics, text]
        )

    def generate_tshirt_mockup(style, color, graphics, text=None):
        # Generate T-shirt design
        design_image = generate_tshirt_design(style, color, graphics, text)

        # Load blank T-shirt mockup template image
        mockup_template = Image.open("path/to/your/mockup/template.jpg")  # Update the path to your mockup template

        # Convert design image and mockup template to numpy arrays
        design_np = np.array(design_image)
        mockup_np = np.array(mockup_template)

        # Resize design image to fit mockup (example resizing)
        design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2))

        # Example: Overlay design onto mockup using OpenCV
        y_offset = mockup_np.shape[0] // 4
        x_offset = mockup_np.shape[1] // 4
        y1, y2 = y_offset, y_offset + design_resized.shape[0]
        x1, x2 = x_offset, x_offset + design_resized.shape[1]

        alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2])
        alpha_l = 1.0 - alpha_s

        for c in range(0, 3):
            mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] +
                                          alpha_l * mockup_np[y1:y2, x1:x2, c])

        # Convert back to PIL image for Gradio output
        result_image = Image.fromarray(mockup_np)

        return result_image

    run_button.click(
        fn=generate_tshirt_mockup,
        inputs=[style, color, graphics, text],
        outputs=[result]
    )

demo.queue().launch()