gaur3009 commited on
Commit
cbc7533
1 Parent(s): 5a6da52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -116
app.py CHANGED
@@ -1,146 +1,116 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
6
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
  return image
39
 
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
-
66
  with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
 
 
 
 
87
  )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
  )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
  )
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
 
 
 
2
  import torch
3
+ from PIL import Image
4
+ import numpy as np
5
+ import cv2
6
+ from diffusers import StableDiffusionPipeline
7
 
8
+ # Setup the model
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_id = "stabilityai/sdxl-turbo"
11
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
12
+ pipe = pipe.to(device)
13
 
14
+ # Generate T-shirt design function
15
+ def generate_tshirt_design(style, color, graphics, text=None):
16
+ prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}"
17
+ if text:
18
+ prompt += f", text: {text}"
19
+ image = pipe(prompt).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  return image
21
 
22
+ # T-shirt mockup generator with Gradio interface
23
  examples = [
24
+ ["Casual", "White", "Logo: MyBrand", None],
25
+ ["Formal", "Black", "Text: Hello World", "Custom text"],
26
+ ["Sports", "Red", "Graphic: Team logo", None],
27
  ]
28
 
29
+ css = """
30
  #col-container {
31
  margin: 0 auto;
32
  max-width: 520px;
33
  }
34
  """
35
 
 
 
 
 
 
36
  with gr.Blocks(css=css) as demo:
 
37
  with gr.Column(elem_id="col-container"):
38
+ gr.Markdown("""
39
+ # T-shirt Mockup Generator with Rookus AI
 
40
  """)
41
+
42
  with gr.Row():
43
+ style = gr.Dropdown(
44
+ label="T-shirt Style",
45
+ choices=["Casual", "Formal", "Sports"],
46
+ value="Casual",
 
 
47
  container=False,
48
  )
49
+
50
+ run_button = gr.Button("Generate Mockup", scale=0)
51
+
52
+ result = gr.Image(label="Mockup", show_label=False)
53
+
54
+ with gr.Accordion("Design Options", open=False):
55
+ color = gr.Radio(
56
+ label="T-shirt Color",
57
+ choices=["White", "Black", "Blue", "Red", "Green"],
58
+ value="White",
59
+ )
60
+
61
+ graphics = gr.Textbox(
62
+ label="Graphics/Logo",
63
+ placeholder="Enter graphics or logo details",
64
+ visible=True,
65
  )
66
+
67
+ text = gr.Textbox(
68
+ label="Text (optional)",
69
+ placeholder="Enter optional text",
70
+ visible=True,
 
 
71
  )
72
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  gr.Examples(
74
+ examples=examples,
75
+ inputs=[style, color, graphics, text]
76
  )
77
 
78
+ def generate_tshirt_mockup(style, color, graphics, text=None):
79
+ # Generate T-shirt design
80
+ design_image = generate_tshirt_design(style, color, graphics, text)
81
+
82
+ # Load blank T-shirt mockup template image
83
+ mockup_template = Image.open("path/to/your/mockup/template.jpg") # Update the path to your mockup template
84
+
85
+ # Convert design image and mockup template to numpy arrays
86
+ design_np = np.array(design_image)
87
+ mockup_np = np.array(mockup_template)
88
+
89
+ # Resize design image to fit mockup (example resizing)
90
+ design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2))
91
+
92
+ # Example: Overlay design onto mockup using OpenCV
93
+ y_offset = mockup_np.shape[0] // 4
94
+ x_offset = mockup_np.shape[1] // 4
95
+ y1, y2 = y_offset, y_offset + design_resized.shape[0]
96
+ x1, x2 = x_offset, x_offset + design_resized.shape[1]
97
+
98
+ alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2])
99
+ alpha_l = 1.0 - alpha_s
100
+
101
+ for c in range(0, 3):
102
+ mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] +
103
+ alpha_l * mockup_np[y1:y2, x1:x2, c])
104
+
105
+ # Convert back to PIL image for Gradio output
106
+ result_image = Image.fromarray(mockup_np)
107
+
108
+ return result_image
109
+
110
  run_button.click(
111
+ fn=generate_tshirt_mockup,
112
+ inputs=[style, color, graphics, text],
113
+ outputs=[result]
114
  )
115
 
116
+ demo.queue().launch()