|
import spaces |
|
import random |
|
import torch |
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
from huggingface_hub import snapshot_download |
|
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor |
|
from diffusers.utils import load_image |
|
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from kolors.models.controlnet import ControlNetModel |
|
from diffusers import AutoencoderKL |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
from diffusers import EulerDiscreteScheduler |
|
from PIL import Image |
|
from annotator.midas import MidasDetector |
|
from annotator.dwpose import DWposeDetector |
|
from annotator.util import resize_image, HWC3 |
|
from transformers import pipeline |
|
|
|
device = "cuda" |
|
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") |
|
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth") |
|
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny") |
|
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose") |
|
|
|
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device) |
|
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device) |
|
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device) |
|
|
|
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline( |
|
vae=vae, |
|
controlnet=controlnet_depth, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False |
|
) |
|
|
|
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline( |
|
vae=vae, |
|
controlnet=controlnet_canny, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False |
|
) |
|
|
|
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline( |
|
vae=vae, |
|
controlnet=controlnet_pose, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False |
|
) |
|
|
|
|
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
|
|
def process_prompt(prompt): |
|
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt): |
|
translated = translator(prompt)[0]['translation_text'] |
|
return prompt, translated |
|
return prompt, prompt |
|
|
|
@spaces.GPU |
|
def process_canny_condition(image, canny_threods=[100,200]): |
|
np_image = image.copy() |
|
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1]) |
|
np_image = np_image[:, :, None] |
|
np_image = np.concatenate([np_image, np_image, np_image], axis=2) |
|
np_image = HWC3(np_image) |
|
return Image.fromarray(np_image) |
|
|
|
model_midas = MidasDetector() |
|
@spaces.GPU |
|
def process_depth_condition_midas(img, res = 1024): |
|
h,w,_ = img.shape |
|
img = resize_image(HWC3(img), res) |
|
result = HWC3(model_midas(img)) |
|
result = cv2.resize(result, (w,h)) |
|
return Image.fromarray(result) |
|
|
|
model_dwpose = DWposeDetector() |
|
@spaces.GPU |
|
def process_dwpose_condition(image, res=1024): |
|
h,w,_ = image.shape |
|
img = resize_image(HWC3(image), res) |
|
out_res, out_img = model_dwpose(image) |
|
result = HWC3(out_img) |
|
result = cv2.resize(result, (w,h)) |
|
return Image.fromarray(result) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU |
|
def infer_depth(prompt, |
|
image = None, |
|
negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.", |
|
seed = 397886929, |
|
randomize_seed = False, |
|
guidance_scale = 6.0, |
|
num_inference_steps = 50, |
|
controlnet_conditioning_scale = 0.7, |
|
control_guidance_end = 0.9, |
|
strength = 1.0 |
|
): |
|
original_prompt, english_prompt = process_prompt(prompt) |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
init_image = resize_image(image, MAX_IMAGE_SIZE) |
|
pipe = pipe_depth.to("cuda") |
|
condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE) |
|
image = pipe( |
|
prompt=english_prompt, |
|
image=init_image, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
control_guidance_end=control_guidance_end, |
|
strength=strength, |
|
control_image=condi_img, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
).images[0] |
|
return [condi_img, image], seed, original_prompt, english_prompt |
|
|
|
@spaces.GPU |
|
def infer_canny(prompt, |
|
image = None, |
|
negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.", |
|
seed = 397886929, |
|
randomize_seed = False, |
|
guidance_scale = 6.0, |
|
num_inference_steps = 50, |
|
controlnet_conditioning_scale = 0.7, |
|
control_guidance_end = 0.9, |
|
strength = 1.0 |
|
): |
|
original_prompt, english_prompt = process_prompt(prompt) |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
init_image = resize_image(image, MAX_IMAGE_SIZE) |
|
pipe = pipe_canny.to("cuda") |
|
condi_img = process_canny_condition(np.array(init_image)) |
|
image = pipe( |
|
prompt=english_prompt, |
|
image=init_image, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
control_guidance_end=control_guidance_end, |
|
strength=strength, |
|
control_image=condi_img, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
).images[0] |
|
return [condi_img, image], seed, original_prompt, english_prompt |
|
|
|
@spaces.GPU |
|
def infer_pose(prompt, |
|
image = None, |
|
negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.", |
|
seed = 66, |
|
randomize_seed = False, |
|
guidance_scale = 6.0, |
|
num_inference_steps = 50, |
|
controlnet_conditioning_scale = 0.7, |
|
control_guidance_end = 0.9, |
|
strength = 1.0 |
|
): |
|
original_prompt, english_prompt = process_prompt(prompt) |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
init_image = resize_image(image, MAX_IMAGE_SIZE) |
|
pipe = pipe_pose.to("cuda") |
|
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE) |
|
image = pipe( |
|
prompt=english_prompt, |
|
image=init_image, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
control_guidance_end=control_guidance_end, |
|
strength=strength, |
|
control_image=condi_img, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
).images[0] |
|
return [condi_img, image], seed, original_prompt, english_prompt |
|
|
|
canny_examples = [ |
|
["์๋ฆ๋ค์ด ์๋
, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K", |
|
"image/woman_1.png"], |
|
["ํ๋
ธ๋ผ๋ง, ์ปต ์์ ์์์๋ ๊ท์ฌ์ด ํฐ ๊ฐ์์ง, ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๋, ์ ๋๋ฉ์ด์
์คํ์ผ, 3D ๋ ๋๋ง, ์ฅํ
์ธ ๋ ๋", |
|
"image/dog.png"] |
|
] |
|
|
|
depth_examples = [ |
|
["์ ์นด์ด ๋ง์ฝํ ์คํ์ผ, ํ๋ถํ ์๊ฐ, ์ด๋ก ์
์ธ ๋ฅผ ์
์ ์ฌ์ฑ์ด ๋คํ์ ์ ์๋, ์๋ฆ๋ค์ด ํ๊ฒฝ, ๋ง๊ณ ๋ฐ์, ์ผ๋ฃฉ์ง ๋น๊ณผ ๊ทธ๋ฆผ์, ์ต๊ณ ์ ํ์ง, ์ด์ธ๋ฐ, 8K ํ์ง", |
|
"image/woman_2.png"], |
|
["ํ๋ คํ ์์์ ์์ ์, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K", |
|
"image/bird.png"] |
|
] |
|
|
|
pose_examples = [ |
|
["๋ณด๋ผ์ ํผํ ์ฌ๋ฆฌ๋ธ ๋๋ ์ค๋ฅผ ์
๊ณ ์๊ด๊ณผ ํฐ์ ๋ ์ด์ค ์ฅ๊ฐ์ ๋ ์๋
๊ฐ ์ ์์ผ๋ก ์ผ๊ตด์ ๊ฐ์ธ๊ณ ์๋, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K", |
|
"image/woman_3.png"], |
|
["๊ฒ์์ ์คํฌ์ธ ์ฌํท๊ณผ ํฐ์ ์ด๋๋ฅผ ์
๊ณ ๋ชฉ๊ฑธ์ด๋ฅผ ํ ์ฌ์ฑ์ด ๊ฑฐ๋ฆฌ์ ์ ์๋, ๋ฐฐ๊ฒฝ์ ๋นจ๊ฐ ๊ฑด๋ฌผ๊ณผ ๋
น์ ๋๋ฌด, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K", |
|
"image/woman_4.png"] |
|
] |
|
|
|
css = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors: |
|
with gr.Row(): |
|
with gr.Column(elem_id="col-left"): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="ํ๋กฌํํธ", |
|
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (ํ๊ธ ๋๋ ์์ด)", |
|
lines=2 |
|
) |
|
with gr.Row(): |
|
image = gr.Image(label="์ด๋ฏธ์ง", type="pil") |
|
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ", |
|
placeholder="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์", |
|
visible=True, |
|
value="nsfw, ์ผ๊ตด ๊ทธ๋ฆผ์, ์ ํด์๋, jpeg ์ํฐํฉํธ, ํ๋ฆฟํจ, ์ด์
ํจ, ๊ฒ์ ์ผ๊ตด, ๋ค์จ ์กฐ๋ช
" |
|
) |
|
seed = gr.Slider( |
|
label="์๋", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="์๋ ๋ฌด์์ํ", value=True) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="๊ฐ์ด๋์ค ์ค์ผ์ผ", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=6.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="์ถ๋ก ๋จ๊ณ ์", |
|
minimum=10, |
|
maximum=50, |
|
step=1, |
|
value=30, |
|
) |
|
with gr.Row(): |
|
controlnet_conditioning_scale = gr.Slider( |
|
label="์ปจํธ๋กค๋ท ์ปจ๋์
๋ ์ค์ผ์ผ", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.7, |
|
) |
|
control_guidance_end = gr.Slider( |
|
label="์ปจํธ๋กค ๊ฐ์ด๋์ค ์ข
๋ฃ", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.9, |
|
) |
|
with gr.Row(): |
|
strength = gr.Slider( |
|
label="๊ฐ๋", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
with gr.Row(): |
|
canny_button = gr.Button("์บ๋", elem_id="button") |
|
depth_button = gr.Button("๊น์ด", elem_id="button") |
|
pose_button = gr.Button("ํฌ์ฆ", elem_id="button") |
|
|
|
with gr.Column(elem_id="col-right"): |
|
result = gr.Gallery(label="๊ฒฐ๊ณผ", show_label=False, columns=2) |
|
seed_used = gr.Number(label="์ฌ์ฉ๋ ์๋") |
|
original_prompt_display = gr.Textbox(label="์๋ณธ ํ๋กฌํํธ") |
|
english_prompt_display = gr.Textbox(label="์์ด ํ๋กฌํํธ") |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
fn=infer_canny, |
|
examples=canny_examples, |
|
inputs=[prompt, image], |
|
outputs=[result, seed_used, original_prompt_display, english_prompt_display], |
|
label="Canny" |
|
) |
|
with gr.Row(): |
|
gr.Examples( |
|
fn=infer_depth, |
|
examples=depth_examples, |
|
inputs=[prompt, image], |
|
outputs=[result, seed_used, original_prompt_display, english_prompt_display], |
|
label="Depth" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
fn=infer_pose, |
|
examples=pose_examples, |
|
inputs=[prompt, image], |
|
outputs=[result, seed_used, original_prompt_display, english_prompt_display], |
|
label="Pose" |
|
) |
|
|
|
canny_button.click( |
|
fn=infer_canny, |
|
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength], |
|
outputs=[result, seed_used, original_prompt_display, english_prompt_display] |
|
) |
|
|
|
depth_button.click( |
|
fn=infer_depth, |
|
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength], |
|
outputs=[result, seed_used, original_prompt_display, english_prompt_display] |
|
) |
|
|
|
pose_button.click( |
|
fn=infer_pose, |
|
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength], |
|
outputs=[result, seed_used, original_prompt_display, english_prompt_display] |
|
) |
|
|
|
Kolors.queue().launch(debug=True) |
|
|