File size: 14,600 Bytes
d5f497d 6c91ee7 d5f497d 78d6af0 6c91ee7 d5f497d 6c91ee7 78d6af0 6c91ee7 3ad3d31 6c91ee7 78d6af0 d5f497d 6c91ee7 3ad3d31 d5f497d 6c91ee7 3ad3d31 d5f497d 6c91ee7 d5f497d 78d6af0 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 78d6af0 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 3ad3d31 78d6af0 3ad3d31 78d6af0 6c91ee7 d5f497d 3ad3d31 3936987 78d6af0 3ad3d31 d5f497d 8004741 d5f497d e9f3ef9 6c91ee7 78d6af0 8f532a7 6c91ee7 78d6af0 d5f497d 78d6af0 e9f3ef9 78d6af0 6c91ee7 78d6af0 6c91ee7 78d6af0 cd4f227 e9f3ef9 78d6af0 6155537 e9f3ef9 78d6af0 e9f3ef9 78d6af0 e9f3ef9 78d6af0 e9f3ef9 78d6af0 fad18b4 3ad3d31 78d6af0 595a73a 3ad3d31 78d6af0 3ad3d31 78d6af0 595a73a 3ad3d31 78d6af0 3ad3d31 78d6af0 2602407 78ad020 2602407 fad18b4 2602407 fad18b4 78ad020 2602407 fad18b4 2602407 fad18b4 d5f497d 3ad3d31 2602407 0fb30ab 2602407 0fb30ab 3ad3d31 2602407 20c2217 d5f497d f92dc60 2602407 d5f497d 2602407 78d6af0 d890da3 d5f497d 6c91ee7 2602407 d5f497d 2602407 d5f497d 2602407 d5f497d 2602407 d5f497d 2602407 d5f497d 2602407 d5f497d 6c91ee7 d5f497d 2602407 d5f497d 6c91ee7 d5f497d 6c91ee7 2602407 d5f497d 6c91ee7 2602407 6c91ee7 2602407 6c91ee7 d5f497d 78ad020 2602407 d5f497d 2602407 78d6af0 d5f497d 78d6af0 78ad020 78d6af0 d5f497d 3ad3d31 78d6af0 3ad3d31 d5f497d 78ad020 78d6af0 78ad020 78d6af0 78ad020 3ad3d31 78d6af0 3ad3d31 78d6af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3
from transformers import pipeline
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_depth,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_pose,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# prompt๋ฅผ ์ฒ๋ฆฌํ๋ ํจ์ ์ถ๊ฐ
def process_prompt(prompt):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
translated = translator(prompt)[0]['translation_text']
return prompt, translated
return prompt, prompt
@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
model_midas = MidasDetector()
@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
h,w,_ = img.shape
img = resize_image(HWC3(img), res)
result = HWC3(model_midas(img))
result = cv2.resize(result, (w,h))
return Image.fromarray(result)
model_dwpose = DWposeDetector()
@spaces.GPU
def process_dwpose_condition(image, res=1024):
h,w,_ = image.shape
img = resize_image(HWC3(image), res)
out_res, out_img = model_dwpose(image)
result = HWC3(out_img)
result = cv2.resize(result, (w,h))
return Image.fromarray(result)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer_depth(prompt,
image = None,
negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.",
seed = 397886929,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
original_prompt, english_prompt = process_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_depth.to("cuda")
condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
image = pipe(
prompt=english_prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed, original_prompt, english_prompt
@spaces.GPU
def infer_canny(prompt,
image = None,
negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.",
seed = 397886929,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
original_prompt, english_prompt = process_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
condi_img = process_canny_condition(np.array(init_image))
image = pipe(
prompt=english_prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed, original_prompt, english_prompt
@spaces.GPU
def infer_pose(prompt,
image = None,
negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.",
seed = 66,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
original_prompt, english_prompt = process_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_pose.to("cuda")
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
image = pipe(
prompt=english_prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed, original_prompt, english_prompt
canny_examples = [
["์๋ฆ๋ค์ด ์๋
, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
"image/woman_1.png"],
["ํ๋
ธ๋ผ๋ง, ์ปต ์์ ์์์๋ ๊ท์ฌ์ด ํฐ ๊ฐ์์ง, ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๋, ์ ๋๋ฉ์ด์
์คํ์ผ, 3D ๋ ๋๋ง, ์ฅํ
์ธ ๋ ๋",
"image/dog.png"]
]
depth_examples = [
["์ ์นด์ด ๋ง์ฝํ ์คํ์ผ, ํ๋ถํ ์๊ฐ, ์ด๋ก ์
์ธ ๋ฅผ ์
์ ์ฌ์ฑ์ด ๋คํ์ ์ ์๋, ์๋ฆ๋ค์ด ํ๊ฒฝ, ๋ง๊ณ ๋ฐ์, ์ผ๋ฃฉ์ง ๋น๊ณผ ๊ทธ๋ฆผ์, ์ต๊ณ ์ ํ์ง, ์ด์ธ๋ฐ, 8K ํ์ง",
"image/woman_2.png"],
["ํ๋ คํ ์์์ ์์ ์, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
"image/bird.png"]
]
pose_examples = [
["๋ณด๋ผ์ ํผํ ์ฌ๋ฆฌ๋ธ ๋๋ ์ค๋ฅผ ์
๊ณ ์๊ด๊ณผ ํฐ์ ๋ ์ด์ค ์ฅ๊ฐ์ ๋ ์๋
๊ฐ ์ ์์ผ๋ก ์ผ๊ตด์ ๊ฐ์ธ๊ณ ์๋, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
"image/woman_3.png"],
["๊ฒ์์ ์คํฌ์ธ ์ฌํท๊ณผ ํฐ์ ์ด๋๋ฅผ ์
๊ณ ๋ชฉ๊ฑธ์ด๋ฅผ ํ ์ฌ์ฑ์ด ๊ฑฐ๋ฆฌ์ ์ ์๋, ๋ฐฐ๊ฒฝ์ ๋นจ๊ฐ ๊ฑด๋ฌผ๊ณผ ๋
น์ ๋๋ฌด, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
"image/woman_4.png"]
]
css = """
footer {
visibility: hidden;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="ํ๋กฌํํธ",
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (ํ๊ธ ๋๋ ์์ด)",
lines=2
)
with gr.Row():
image = gr.Image(label="์ด๋ฏธ์ง", type="pil")
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
negative_prompt = gr.Textbox(
label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ",
placeholder="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์",
visible=True,
value="nsfw, ์ผ๊ตด ๊ทธ๋ฆผ์, ์ ํด์๋, jpeg ์ํฐํฉํธ, ํ๋ฆฟํจ, ์ด์
ํจ, ๊ฒ์ ์ผ๊ตด, ๋ค์จ ์กฐ๋ช
"
)
seed = gr.Slider(
label="์๋",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="์๋ ๋ฌด์์ํ", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="๊ฐ์ด๋์ค ์ค์ผ์ผ",
minimum=0.0,
maximum=10.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="์ถ๋ก ๋จ๊ณ ์",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="์ปจํธ๋กค๋ท ์ปจ๋์
๋ ์ค์ผ์ผ",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
control_guidance_end = gr.Slider(
label="์ปจํธ๋กค ๊ฐ์ด๋์ค ์ข
๋ฃ",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="๊ฐ๋",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Row():
canny_button = gr.Button("์บ๋", elem_id="button")
depth_button = gr.Button("๊น์ด", elem_id="button")
pose_button = gr.Button("ํฌ์ฆ", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="๊ฒฐ๊ณผ", show_label=False, columns=2)
seed_used = gr.Number(label="์ฌ์ฉ๋ ์๋")
original_prompt_display = gr.Textbox(label="์๋ณธ ํ๋กฌํํธ")
english_prompt_display = gr.Textbox(label="์์ด ํ๋กฌํํธ")
with gr.Row():
gr.Examples(
fn=infer_canny,
examples=canny_examples,
inputs=[prompt, image],
outputs=[result, seed_used, original_prompt_display, english_prompt_display],
label="Canny"
)
with gr.Row():
gr.Examples(
fn=infer_depth,
examples=depth_examples,
inputs=[prompt, image],
outputs=[result, seed_used, original_prompt_display, english_prompt_display],
label="Depth"
)
with gr.Row():
gr.Examples(
fn=infer_pose,
examples=pose_examples,
inputs=[prompt, image],
outputs=[result, seed_used, original_prompt_display, english_prompt_display],
label="Pose"
)
canny_button.click(
fn=infer_canny,
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs=[result, seed_used, original_prompt_display, english_prompt_display]
)
depth_button.click(
fn=infer_depth,
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs=[result, seed_used, original_prompt_display, english_prompt_display]
)
pose_button.click(
fn=infer_pose,
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs=[result, seed_used, original_prompt_display, english_prompt_display]
)
Kolors.queue().launch(debug=True)
|