File size: 14,600 Bytes
d5f497d
 
 
6c91ee7
 
 
d5f497d
78d6af0
6c91ee7
 
d5f497d
 
6c91ee7
78d6af0
6c91ee7
 
 
 
3ad3d31
6c91ee7
78d6af0
d5f497d
 
 
6c91ee7
 
3ad3d31
d5f497d
 
 
 
 
6c91ee7
 
 
3ad3d31
d5f497d
6c91ee7
d5f497d
78d6af0
6c91ee7
 
 
 
d5f497d
6c91ee7
d5f497d
6c91ee7
d5f497d
78d6af0
d5f497d
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
3ad3d31
 
78d6af0
3ad3d31
 
 
 
 
 
 
78d6af0
 
 
 
 
 
 
 
 
 
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
3ad3d31
 
 
 
 
3936987
 
78d6af0
3ad3d31
 
d5f497d
8004741
d5f497d
 
e9f3ef9
6c91ee7
78d6af0
8f532a7
6c91ee7
 
 
 
 
 
 
78d6af0
d5f497d
 
 
78d6af0
e9f3ef9
78d6af0
6c91ee7
78d6af0
 
 
 
 
 
 
 
 
6c91ee7
 
 
78d6af0
cd4f227
e9f3ef9
 
 
78d6af0
6155537
e9f3ef9
 
 
 
 
 
 
78d6af0
e9f3ef9
 
 
78d6af0
e9f3ef9
 
 
78d6af0
 
 
 
 
 
 
 
 
e9f3ef9
 
 
78d6af0
fad18b4
3ad3d31
 
 
78d6af0
595a73a
3ad3d31
 
 
 
 
 
 
78d6af0
3ad3d31
 
 
78d6af0
595a73a
3ad3d31
 
78d6af0
 
 
 
 
 
 
 
 
3ad3d31
 
 
78d6af0
2602407
78ad020
2602407
fad18b4
2602407
fad18b4
78ad020
 
 
2602407
fad18b4
2602407
fad18b4
d5f497d
 
3ad3d31
2602407
0fb30ab
2602407
0fb30ab
3ad3d31
 
2602407
 
 
20c2217
d5f497d
 
f92dc60
 
 
 
 
2602407
d5f497d
 
 
 
2602407
78d6af0
d890da3
d5f497d
6c91ee7
2602407
 
d5f497d
2602407
 
d5f497d
2602407
d5f497d
 
2602407
d5f497d
 
 
 
 
2602407
d5f497d
 
2602407
d5f497d
 
 
6c91ee7
d5f497d
 
2602407
d5f497d
 
 
6c91ee7
d5f497d
 
6c91ee7
2602407
d5f497d
 
6c91ee7
 
 
 
2602407
6c91ee7
 
 
 
 
 
 
2602407
6c91ee7
 
 
 
d5f497d
78ad020
2602407
 
 
d5f497d
 
2602407
 
78d6af0
 
d5f497d
 
 
78d6af0
 
 
 
 
78ad020
 
 
78d6af0
 
 
 
 
d5f497d
3ad3d31
 
 
78d6af0
 
 
 
 
3ad3d31
d5f497d
78ad020
78d6af0
 
 
78ad020
 
 
78d6af0
 
 
78ad020
 
3ad3d31
78d6af0
 
 
3ad3d31
 
78d6af0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3
from transformers import pipeline

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)

pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_depth,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_pose,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# prompt๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ํ•จ์ˆ˜ ์ถ”๊ฐ€
def process_prompt(prompt):
    if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
        translated = translator(prompt)[0]['translation_text']
        return prompt, translated
    return prompt, prompt

@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

model_midas = MidasDetector()
@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
    h,w,_ = img.shape
    img = resize_image(HWC3(img), res)
    result = HWC3(model_midas(img))
    result = cv2.resize(result, (w,h))
    return Image.fromarray(result)

model_dwpose = DWposeDetector()
@spaces.GPU
def process_dwpose_condition(image, res=1024):
    h,w,_ = image.shape
    img = resize_image(HWC3(image), res)
    out_res, out_img = model_dwpose(image) 
    result = HWC3(out_img)
    result = cv2.resize(result, (w,h))
    return Image.fromarray(result)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer_depth(prompt, 
          image = None, 
          negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.", 
          seed = 397886929, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    original_prompt, english_prompt = process_prompt(prompt)
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_depth.to("cuda")
    condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=english_prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed, original_prompt, english_prompt

@spaces.GPU
def infer_canny(prompt, 
          image = None, 
          negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.", 
          seed = 397886929, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    original_prompt, english_prompt = process_prompt(prompt)
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_canny.to("cuda")
    condi_img = process_canny_condition(np.array(init_image))
    image = pipe(
        prompt=english_prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed, original_prompt, english_prompt

@spaces.GPU
def infer_pose(prompt, 
          image = None, 
          negative_prompt = "NSFW, facial shadow, low resolution, JPEG artifacts, blurry, poor quality, blackface, neon lights.", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    original_prompt, english_prompt = process_prompt(prompt)
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_pose.to("cuda")
    condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=english_prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed, original_prompt, english_prompt

canny_examples = [
    ["์•„๋ฆ„๋‹ค์šด ์†Œ๋…€, ๊ณ ํ’ˆ์งˆ, ๋งค์šฐ ์„ ๋ช…, ์ƒ์ƒํ•œ ์ƒ‰์ƒ, ์ดˆ๊ณ ํ•ด์ƒ๋„, ์ตœ์ƒ์˜ ํ’ˆ์งˆ, 8k, ๊ณ ํ™”์งˆ, 4K",
     "image/woman_1.png"],
    ["ํŒŒ๋…ธ๋ผ๋งˆ, ์ปต ์•ˆ์— ์•‰์•„์žˆ๋Š” ๊ท€์—ฌ์šด ํฐ ๊ฐ•์•„์ง€, ์นด๋ฉ”๋ผ๋ฅผ ๋ฐ”๋ผ๋ณด๋Š”, ์• ๋‹ˆ๋ฉ”์ด์…˜ ์Šคํƒ€์ผ, 3D ๋ Œ๋”๋ง, ์˜ฅํ…Œ์ธ ๋ Œ๋”",
    "image/dog.png"]
]

depth_examples = [
    ["์‹ ์นด์ด ๋งˆ์ฝ”ํ†  ์Šคํƒ€์ผ, ํ’๋ถ€ํ•œ ์ƒ‰๊ฐ, ์ดˆ๋ก ์…”์ธ ๋ฅผ ์ž…์€ ์—ฌ์„ฑ์ด ๋“คํŒ์— ์„œ ์žˆ๋Š”, ์•„๋ฆ„๋‹ค์šด ํ’๊ฒฝ, ๋ง‘๊ณ  ๋ฐ์€, ์–ผ๋ฃฉ์ง„ ๋น›๊ณผ ๊ทธ๋ฆผ์ž, ์ตœ๊ณ ์˜ ํ’ˆ์งˆ, ์ดˆ์„ธ๋ฐ€, 8K ํ™”์งˆ",
     "image/woman_2.png"],
    ["ํ™”๋ คํ•œ ์ƒ‰์ƒ์˜ ์ž‘์€ ์ƒˆ, ๊ณ ํ’ˆ์งˆ, ๋งค์šฐ ์„ ๋ช…, ์ƒ์ƒํ•œ ์ƒ‰์ƒ, ์ดˆ๊ณ ํ•ด์ƒ๋„, ์ตœ์ƒ์˜ ํ’ˆ์งˆ, 8k, ๊ณ ํ™”์งˆ, 4K",
     "image/bird.png"]
]

pose_examples = [
    ["๋ณด๋ผ์ƒ‰ ํผํ”„ ์Šฌ๋ฆฌ๋ธŒ ๋“œ๋ ˆ์Šค๋ฅผ ์ž…๊ณ  ์™•๊ด€๊ณผ ํฐ์ƒ‰ ๋ ˆ์ด์Šค ์žฅ๊ฐ‘์„ ๋‚€ ์†Œ๋…€๊ฐ€ ์–‘ ์†์œผ๋กœ ์–ผ๊ตด์„ ๊ฐ์‹ธ๊ณ  ์žˆ๋Š”, ๊ณ ํ’ˆ์งˆ, ๋งค์šฐ ์„ ๋ช…, ์ƒ์ƒํ•œ ์ƒ‰์ƒ, ์ดˆ๊ณ ํ•ด์ƒ๋„, ์ตœ์ƒ์˜ ํ’ˆ์งˆ, 8k, ๊ณ ํ™”์งˆ, 4K",
     "image/woman_3.png"],
    ["๊ฒ€์€์ƒ‰ ์Šคํฌ์ธ  ์žฌํ‚ท๊ณผ ํฐ์ƒ‰ ์ด๋„ˆ๋ฅผ ์ž…๊ณ  ๋ชฉ๊ฑธ์ด๋ฅผ ํ•œ ์—ฌ์„ฑ์ด ๊ฑฐ๋ฆฌ์— ์„œ ์žˆ๋Š”, ๋ฐฐ๊ฒฝ์€ ๋นจ๊ฐ„ ๊ฑด๋ฌผ๊ณผ ๋…น์ƒ‰ ๋‚˜๋ฌด, ๊ณ ํ’ˆ์งˆ, ๋งค์šฐ ์„ ๋ช…, ์ƒ์ƒํ•œ ์ƒ‰์ƒ, ์ดˆ๊ณ ํ•ด์ƒ๋„, ์ตœ์ƒ์˜ ํ’ˆ์งˆ, 8k, ๊ณ ํ™”์งˆ, 4K",
     "image/woman_4.png"]
]

css = """
footer {
    visibility: hidden;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="ํ”„๋กฌํ”„ํŠธ",
                    placeholder="ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š” (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="์ด๋ฏธ์ง€", type="pil")
            with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ •", open=False):
                negative_prompt = gr.Textbox(
                    label="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ",
                    placeholder="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
                    visible=True,
                    value="nsfw, ์–ผ๊ตด ๊ทธ๋ฆผ์ž, ์ €ํ•ด์ƒ๋„, jpeg ์•„ํ‹ฐํŒฉํŠธ, ํ๋ฆฟํ•จ, ์—ด์•…ํ•จ, ๊ฒ€์€ ์–ผ๊ตด, ๋„ค์˜จ ์กฐ๋ช…"
                )
                seed = gr.Slider(
                    label="์‹œ๋“œ",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="์‹œ๋“œ ๋ฌด์ž‘์œ„ํ™”", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="๊ฐ€์ด๋˜์Šค ์Šค์ผ€์ผ",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=6.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="์ถ”๋ก  ๋‹จ๊ณ„ ์ˆ˜",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="์ปจํŠธ๋กค๋„ท ์ปจ๋””์…”๋‹ ์Šค์ผ€์ผ",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.7,
                    )
                    control_guidance_end = gr.Slider(
                        label="์ปจํŠธ๋กค ๊ฐ€์ด๋˜์Šค ์ข…๋ฃŒ",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="๊ฐ•๋„",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
            with gr.Row():
                canny_button = gr.Button("์บ๋‹ˆ", elem_id="button")
                depth_button = gr.Button("๊นŠ์ด", elem_id="button")
                pose_button = gr.Button("ํฌ์ฆˆ", elem_id="button")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="๊ฒฐ๊ณผ", show_label=False, columns=2)
            seed_used = gr.Number(label="์‚ฌ์šฉ๋œ ์‹œ๋“œ")
            original_prompt_display = gr.Textbox(label="์›๋ณธ ํ”„๋กฌํ”„ํŠธ")
            english_prompt_display = gr.Textbox(label="์˜์–ด ํ”„๋กฌํ”„ํŠธ")
    
    with gr.Row():
        gr.Examples(
                fn=infer_canny,
                examples=canny_examples,
                inputs=[prompt, image],
                outputs=[result, seed_used, original_prompt_display, english_prompt_display],
                label="Canny"
            )
    with gr.Row():
        gr.Examples(
                fn=infer_depth,
                examples=depth_examples,
                inputs=[prompt, image],
                outputs=[result, seed_used, original_prompt_display, english_prompt_display],
                label="Depth"
            )
        
    with gr.Row():
        gr.Examples(
                fn=infer_pose,
                examples=pose_examples,
                inputs=[prompt, image],
                outputs=[result, seed_used, original_prompt_display, english_prompt_display],
                label="Pose"
            )

    canny_button.click(
        fn=infer_canny,
        inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs=[result, seed_used, original_prompt_display, english_prompt_display]
    )

    depth_button.click(
        fn=infer_depth,
        inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs=[result, seed_used, original_prompt_display, english_prompt_display]
    )

    pose_button.click(
        fn=infer_pose,
        inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs=[result, seed_used, original_prompt_display, english_prompt_display]
    )

Kolors.queue().launch(debug=True)