File size: 20,123 Bytes
736eb2a
 
 
 
2711cd6
 
5fbbee3
2711cd6
 
 
 
 
 
5fbbee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fbbee3
 
 
 
2711cd6
5bb95f3
2711cd6
5fbbee3
2711cd6
5bb95f3
 
736eb2a
 
 
 
 
5fbbee3
 
736eb2a
 
 
 
 
9a4a692
 
87e696f
9a4a692
 
87e696f
 
15af994
2ec74bb
0c7d699
87e696f
9a4a692
15af994
736eb2a
2711cd6
 
 
b2d9196
 
 
 
2711cd6
2ec74bb
 
 
 
 
 
87e696f
2711cd6
 
 
 
87e696f
 
 
b2d9196
2711cd6
 
15af994
87e696f
 
 
 
 
 
15af994
 
0c7d699
 
 
b2d9196
87e696f
 
 
 
 
 
b2d9196
 
 
a8356e2
b2d9196
87e696f
736eb2a
6c70e1e
736eb2a
 
 
 
 
 
 
 
a1801f4
736eb2a
5fbbee3
736eb2a
 
 
 
 
ef66fb7
2711cd6
15af994
2711cd6
736eb2a
ef66fb7
736eb2a
 
 
 
 
 
 
 
5fbbee3
2711cd6
5bb95f3
2711cd6
 
 
736eb2a
e6e82b8
 
5fbbee3
 
2711cd6
0c7d699
736eb2a
2711cd6
 
87e696f
2711cd6
 
15af994
 
87e696f
 
15af994
 
 
2ec74bb
0c7d699
15af994
 
87e696f
2711cd6
87e696f
736eb2a
 
 
 
5c81a32
5bb95f3
5c81a32
 
 
 
736eb2a
5c81a32
 
 
 
 
 
5fbbee3
5c81a32
5bb95f3
5c81a32
 
 
736eb2a
e6e82b8
 
5fbbee3
 
5c81a32
 
 
 
 
 
 
2ec74bb
5c81a32
 
2ec74bb
e6e82b8
5c81a32
736eb2a
a1801f4
 
 
736eb2a
 
5fbbee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736eb2a
5fbbee3
 
 
 
 
 
 
 
 
 
 
2ec74bb
5fbbee3
 
2ec74bb
736eb2a
a1801f4
 
 
736eb2a
 
 
 
 
a1801f4
 
 
736eb2a
0000bec
 
 
736eb2a
0000bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736eb2a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import gradio as gr
from css import custom_css
import pandas as pd
from gradio_modal import Modal
import os
import yaml
import itertools

folder_path = 'configs'
# List to store data from YAML files
data_list = []
metadata_dict = {}


def expand_string_list(string_list):
    expanded_list = []

    # Add individual strings to the expanded list
    expanded_list.extend(string_list)

    # Generate combinations of different lengths from the input list
    for r in range(2, len(string_list) + 1):
        combinations = itertools.combinations(string_list, r)
        for combination in combinations:
            # Generate permutations of each combination
            permutations = itertools.permutations(combination)
            for permutation in permutations:
                expanded_list.append(' + '.join(permutation))

    return expanded_list

# Iterate over each file in the folder
for filename in os.listdir(folder_path):
    if filename.endswith('.yaml'):
        # Read YAML file
        file_path = os.path.join(folder_path, filename)
        with open(file_path, 'r') as yamlfile:
            yaml_data = yaml.safe_load(yamlfile)
            # Append YAML data to list
            data_list.append(yaml_data)
            metadata_dict['<u>'+yaml_data['Link']+'</u>'] = yaml_data
            
globaldf = pd.DataFrame(data_list)
globaldf['Link'] = '<u>'+globaldf['Link']+'</u>'

# Define the desired order of categories
modality_order = ["Text", "Image", "Audio", "Video"]
level_order = ["Model", "Dataset", "Output", "Taxonomy"]

modality_order = expand_string_list(modality_order)
level_order = expand_string_list(level_order)

# Convert Modality and Level columns to categorical with specified order
globaldf['Modality'] = pd.Categorical(globaldf['Modality'], categories=modality_order, ordered=True)
globaldf['Level'] = pd.Categorical(globaldf['Level'], categories=level_order, ordered=True)

# Sort DataFrame by Modality and Level
globaldf.sort_values(by=['Modality', 'Level'], inplace=True)

# create a gradio page with tabs and accordions

# Path: taxonomy.py

def filter_modality_level(fulltable, modality_filter, level_filter):
    filteredtable = fulltable[fulltable['Modality'].str.contains('|'.join(modality_filter)) & fulltable['Level'].str.contains('|'.join(level_filter))]
    return filteredtable

def showmodal(evt: gr.SelectData):
    print(evt.value, evt.index, evt.target)
    modal = Modal(visible=False)
    titlemd = gr.Markdown("",visible=False)
    authormd = gr.Markdown("",visible=False)
    affiliationmd = gr.Markdown("",visible=False)
    tagsmd = gr.Markdown("",visible=False)
    abstractmd = gr.Markdown("",visible=False)
    whatisbeingmd = gr.Markdown("",visible=False)
    methodmd = gr.Markdown("",visible=False)
    considerationsmd = gr.Markdown("",visible=False)
    modelsmd = gr.Markdown("",visible=False)
    datasetmd = gr.Markdown("",visible=False)
    metricsmd = gr.Markdown("",visible=False)
    gallery = gr.Gallery([],visible=False)
    if evt.index[1] == 4:
        modal = Modal(visible=True)
        itemdic = metadata_dict[evt.value]

        tags = itemdic['Hashtags']
        if isinstance(tags, list):
            if len(tags) > 0:
                tagstr = ''.join(['<span class="tag">#'+tag+'</span> ' for tag in tags])
                tagsmd = gr.Markdown(tagstr, visible=True)

        models = itemdic['Applicable Models']
        if isinstance(models, list):
            if len(models) > 0:
                modelstr = '### Applicable Models: '+''.join(['<span class="tag">'+model+'</span> ' for model in models])
                modelsmd = gr.Markdown(modelstr, visible=True)


        titlemd = gr.Markdown('# ['+itemdic['Link']+']('+itemdic['URL']+')',visible=True)

        if pd.notnull(itemdic['Authors']):
            authormd = gr.Markdown('## '+itemdic['Authors'],visible=True)
        
        if pd.notnull(itemdic['Affiliations']):
            affiliationmd = gr.Markdown('<strong>Affiliations: </strong>'+ itemdic['Affiliations'],visible=True)

        if pd.notnull(itemdic['Abstract']):
            abstractmd = gr.Markdown(itemdic['Abstract'],visible=True)

        if pd.notnull(itemdic['What it is evaluating']):
            whatisbeingmd = gr.Markdown('<strong>Concept being evaluated: </strong>'+ itemdic['What it is evaluating'],visible=True)

        if pd.notnull(itemdic['Methodology']):
            methodmd = gr.Markdown('<strong>Method of Evaluation: </strong>'+ itemdic['Methodology'],visible=True)

        if pd.notnull(itemdic['Considerations']):
            considerationsmd = gr.Markdown('<strong>Considerations: </strong>'+ itemdic['Considerations'],visible=True)
        
        if pd.notnull(itemdic['Datasets']):
            datasetmd = gr.Markdown('#### [Dataset]('+itemdic['Datasets']+')',visible=True)

        metrics = itemdic['Metrics']
        if isinstance(metrics, list):
            if len(metrics) > 0:
                metricstr = '### Metrics: '+''.join(['<span class="tag">'+metric+'</span> ' for metric in metrics])
                metricsmd = gr.Markdown(metricstr, visible=True)

        screenshots = itemdic['Screenshots']
        if isinstance(screenshots, list):
            if len(screenshots) > 0:
                gallery = gr.Gallery(screenshots, visible=True, height=500, object_fit="scale-down", interactive=False, show_share_button=False)
                
    return [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery]

with gr.Blocks(title = "Social Impact Measurement V2", css=custom_css, theme=gr.themes.Base()) as demo: #theme=gr.themes.Soft(), 
    # create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
    with gr.Row():
        gr.Markdown("""
# Social Impact Measurement
## A taxonomy of the social impacts of AI models and measurement techniques.
                    """)
    with gr.Row():
        gr.Markdown("""
#### Technical Base System Evaluations:
                    
Below we list the aspects possible to evaluate in a generative system. Context-absent evaluations only provide narrow insights into the described aspects of the level of generative AI system. The depth of literature and research on evaluations differ by modality with some modalities having sparse or no relevant literature, but the themes for evaluations can be applied to most systems.

The following categories are high-level, non-exhaustive, and present a synthesis of the findings across different modalities. They refer solely to what can be evaluated in a base technical system:

                    """)
    with gr.Tabs(elem_classes="tab-buttons") as tabs1:
        with gr.TabItem("Bias/Stereotypes"):
            fulltable = globaldf[globaldf['Group'] == 'BiasEvals']
            fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', 'Link']]

            gr.Markdown("""
            Generative AI systems can perpetuate harmful biases from various sources, including systemic, human, and statistical biases. These biases, also known as "fairness" considerations, can manifest in the final system due to choices made throughout the development process. They include harmful associations and stereotypes related to protected classes, such as race, gender, and sexuality. Evaluating biases involves assessing correlations, co-occurrences, sentiment, and toxicity across different modalities, both within the model itself and in the outputs of downstream tasks.
                        """)
            with gr.Row():
                modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"], 
                                                 value=["Text", "Image", "Audio", "Video"], 
                                                 label="Modality", 
                                                 show_label=True,
                                                #  info="Which modality to show."
                                                 )
                level_filter = gr.CheckboxGroup(["Model", "Dataset", "Output", "Taxonomy"], 
                                                 value=["Model", "Dataset", "Output", "Taxonomy"], 
                                                 label="Level", 
                                                 show_label=True,
                                                #  info="Which modality to show."
                                                 )
            with gr.Row():
                table_full = gr.DataFrame(value=fulltable, wrap=True, datatype="markdown", visible=False, interactive=False)
                table_filtered = gr.DataFrame(value=fulltable, wrap=True, datatype="markdown", visible=True, interactive=False)
                modality_filter.change(filter_modality_level, inputs=[table_full, modality_filter, level_filter], outputs=table_filtered)
                level_filter.change(filter_modality_level, inputs=[table_full, modality_filter, level_filter], outputs=table_filtered)


                with Modal(visible=False) as modal:
                    titlemd = gr.Markdown(visible=False)
                    authormd = gr.Markdown(visible=False)
                    affiliationmd = gr.Markdown(visible=False)
                    tagsmd = gr.Markdown(visible=False)
                    abstractmd = gr.Markdown(visible=False)
                    gr.Markdown("""## Construct Validity<br>
                                ### How well it measures the concept it was designed to evaluate""", visible=True)
                    whatisbeingmd = gr.Markdown(visible=False)
                    methodmd = gr.Markdown(visible=False)
                    considerationsmd = gr.Markdown(visible=False)
                    gr.Markdown("""## Resources<br>
                                ### What you need to do this evaluation""", visible=True)
                    modelsmd = gr.Markdown(visible=False)
                    datasetmd = gr.Markdown(visible=False)
                    gr.Markdown("""## Results<br>
                                ### Available evaluation results""", visible=True)
                    metricsmd = gr.Markdown(visible=False)
                    gallery = gr.Gallery(visible=False)
                table_filtered.select(showmodal, None, [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery])



        with gr.TabItem("Cultural Values/Sensitive Content"):
            fulltable = globaldf[globaldf['Group'] == 'CulturalEvals']
            fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', 'Considerations', 'Link']]

            gr.Markdown("""Cultural values are specific to groups and sensitive content is normative. Sensitive topics also vary by culture and can include hate speech. What is considered a sensitive topic, such as egregious violence or adult sexual content, can vary widely by viewpoint. Due to norms differing by culture, region, and language, there is no standard for what constitutes sensitive content.
                        Distinct cultural values present a challenge for deploying models into a global sphere, as what may be appropriate in one culture may be unsafe in others. Generative AI systems cannot be neutral or objective, nor can they encompass truly universal values. There is no “view from nowhere”; in quantifying anything, a particular frame of reference is imposed.
                        """)
            with gr.Row():
                modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"], 
                                                 value=["Text", "Image", "Audio", "Video"], 
                                                 label="Modality", 
                                                 show_label=True,
                                                #  info="Which modality to show."
                                                 )
                level_filter = gr.CheckboxGroup(["Model", "Dataset", "Output", "Taxonomy"], 
                                                 value=["Model", "Dataset", "Output", "Taxonomy"], 
                                                 label="Level", 
                                                 show_label=True,
                                                #  info="Which modality to show."
                                                 )
            with gr.Row():
                table_full = gr.DataFrame(value=fulltable, wrap=True, datatype="markdown", visible=False, interactive=False)
                table_filtered = gr.DataFrame(value=fulltable, wrap=True, datatype="markdown", visible=True, interactive=False)
                modality_filter.change(filter_modality_level, inputs=[table_full, modality_filter, level_filter], outputs=table_filtered)
                level_filter.change(filter_modality_level, inputs=[table_full, modality_filter, level_filter], outputs=table_filtered)


                with Modal(visible=False) as modal:
                    titlemd = gr.Markdown(visible=False)
                    authormd = gr.Markdown(visible=False)
                    tagsmd = gr.Markdown(visible=False)
                    abstractmd = gr.Markdown(visible=False)
                    modelsmd = gr.Markdown(visible=False)
                    datasetmd = gr.Markdown(visible=False)
                    gallery = gr.Gallery(visible=False)
                table_filtered.select(showmodal, None, [modal, titlemd, authormd, tagsmd, abstractmd, modelsmd, datasetmd, gallery])
            


        # with gr.TabItem("Disparate Performance"):
        #     with gr.Row():
        #         gr.Image()

        with gr.TabItem("Privacy/Data Protection"):
            fulltable = globaldf[globaldf['Group'] == 'PrivacyEvals']
            fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', 'Considerations', 'Link']]

            gr.Markdown("""Cultural values are specific to groups and sensitive content is normative. Sensitive topics also vary by culture and can include hate speech. What is considered a sensitive topic, such as egregious violence or adult sexual content, can vary widely by viewpoint. Due to norms differing by culture, region, and language, there is no standard for what constitutes sensitive content.
                        Distinct cultural values present a challenge for deploying models into a global sphere, as what may be appropriate in one culture may be unsafe in others. Generative AI systems cannot be neutral or objective, nor can they encompass truly universal values. There is no “view from nowhere”; in quantifying anything, a particular frame of reference is imposed.
                        """)
            with gr.Row():
                modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"], 
                                                 value=["Text", "Image", "Audio", "Video"], 
                                                 label="Modality", 
                                                 show_label=True,
                                                #  info="Which modality to show."
                                                 )
                level_filter = gr.CheckboxGroup(["Model", "Dataset", "Output", "Taxonomy"], 
                                                 value=["Model", "Dataset", "Output", "Taxonomy"], 
                                                 label="Level", 
                                                 show_label=True,
                                                #  info="Which modality to show."
                                                 )
            with gr.Row():
                table_full = gr.DataFrame(value=fulltable, wrap=True, datatype="markdown", visible=False, interactive=False)
                table_filtered = gr.DataFrame(value=fulltable, wrap=True, datatype="markdown", visible=True, interactive=False)
                modality_filter.change(filter_modality_level, inputs=[table_full, modality_filter, level_filter], outputs=table_filtered)
                level_filter.change(filter_modality_level, inputs=[table_full, modality_filter, level_filter], outputs=table_filtered)


                with Modal(visible=False) as modal:
                    titlemd = gr.Markdown(visible=False)
                    authormd = gr.Markdown(visible=False)
                    tagsmd = gr.Markdown(visible=False)
                    abstractmd = gr.Markdown(visible=False)
                    modelsmd = gr.Markdown(visible=False)
                    datasetmd = gr.Markdown(visible=False)
                    gallery = gr.Gallery(visible=False)
                table_filtered.select(showmodal, None, [modal, titlemd, authormd, tagsmd, abstractmd, modelsmd, datasetmd, gallery])

        # with gr.TabItem("Financial Costs"):
        #     with gr.Row():
        #         gr.Image()

        with gr.TabItem("Environmental Costs"):
            with gr.Row():
                gr.Image()
        
        # with gr.TabItem("Data and Content Moderation Labor"):
        #     with gr.Row():
        #         gr.Image()
    
#     with gr.Row():
#         gr.Markdown("""
# #### B: People and Society Impact Evaluations:
                    
# Long-term effects of systems embedded in society, such as economic or labor impact, largely require ideation of generative AI systems’ possible use cases and have fewer available general evaluations. The following categories heavily depend on how generative AI systems are deployed, including sector and application. In the broader ecosystem, methods of deployment affect social impact.

# The following categories are high-level, non-exhaustive, and present a synthesis of the findings across different modalities. They refer solely to what can be evaluated in people and society:
#                     """)

#     with gr.Tabs(elem_classes="tab-buttons") as tabs2:
#         with gr.TabItem("Trustworthiness and Autonomy"):
#             with gr.Accordion("Trust in Media and Information", open=False):
#                 gr.Image()
#             with gr.Accordion("Overreliance on Outputs", open=False):
#                 gr.Image()
#             with gr.Accordion("Personal Privacy and Sense of Self", open=False):
#                 gr.Image()

#         with gr.TabItem("Inequality, Marginalization, and Violence"):
#             with gr.Accordion("Community Erasure", open=False):
#                 gr.Image()
#             with gr.Accordion("Long-term Amplifying Marginalization by Exclusion (and Inclusion)", open=False):
#                 gr.Image()
#             with gr.Accordion("Abusive or Violent Content", open=False):
#                 gr.Image()

#         with gr.TabItem("Concentration of Authority"):
#             with gr.Accordion("Militarization, Surveillance, and Weaponization", open=False):
#                 gr.Image()
#             with gr.Accordion("Imposing Norms and Values", open=False):
#                 gr.Image()

#         with gr.TabItem("Labor and Creativity"):
#             with gr.Accordion("Intellectual Property and Ownership", open=False):
#                 gr.Image()
#             with gr.Accordion("Economy and Labor Market", open=False):
#                 gr.Image()

#         with gr.TabItem("Ecosystem and Environment"):
#             with gr.Accordion("Widening Resource Gaps", open=False):
#                 gr.Image()
#             with gr.Accordion("Environmental Impacts", open=False):
#                 gr.Image()
            
        
    with gr.Row():
        with gr.Accordion("📚 Citation", open=False):
            citation_button = gr.Textbox(
                value=r"""BOOK CHAPTER CITE GOES HERE""",
                lines=7,
                label="Copy the following to cite this work.",
                elem_id="citation-button",
                show_copy_button=True,
            )


demo.launch(debug=True)