Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import io | |
import requests, json | |
from PIL import Image | |
import base64 | |
from dotenv import load_dotenv, find_dotenv | |
_ = load_dotenv(find_dotenv()) # read local .env file | |
hf_api_key = os.environ['HF_API_KEY'] | |
# Load the translation model (Turkish to English) | |
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-tr-en" | |
headers = { | |
"Authorization": f"Bearer {hf_api_key}", | |
"Content-Type": "application/json" | |
} | |
# Text-to-image endpoint | |
def get_completion(inputs, parameters=None, ENDPOINT_URL=os.environ['HF_API_TTI_STABILITY_AI']): | |
data = {"inputs": inputs} | |
if parameters is not None: | |
data.update({"parameters": parameters}) | |
response = requests.post(ENDPOINT_URL, headers=headers, data=json.dumps(data)) | |
# Check the content type of the response | |
content_type = response.headers.get('Content-Type', '') | |
print(content_type) | |
if 'application/json' in content_type: | |
return json.loads(response.content.decode("utf-8")) | |
elif 'image/' in content_type: | |
return response.content # return raw image data | |
response.raise_for_status() # raise an error for unexpected content types | |
# A helper function to convert the PIL image to base64 | |
def base64_to_pil(img_base64): | |
base64_decoded = base64.b64decode(img_base64) | |
byte_stream = io.BytesIO(base64_decoded) | |
pil_image = Image.open(byte_stream) | |
return pil_image | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
# Translation function | |
def translate_to_english(text): | |
try: | |
# Translate the input from Turkish to English | |
translation = query({"inputs": text}) | |
print(translation) | |
translated_text = translation[0]['translation_text'] | |
return translated_text | |
except Exception as e: | |
print(f"Translation error: {e}") | |
return text # If translation fails, return original text | |
# Main generation function with translation | |
def generate(prompt, negative_prompt, steps, guidance, width, height): | |
# Translate the prompt to English if it's in Turkish | |
translated_prompt = translate_to_english(prompt) | |
print(f"Translated Prompt: {translated_prompt}") | |
params = { | |
"negative_prompt": negative_prompt, | |
"num_inference_steps": steps, | |
"guidance_scale": guidance, | |
"width": width, | |
"height": height | |
} | |
output = get_completion(translated_prompt, params) | |
# Check if the output is an image (bytes) or JSON (dict) | |
if isinstance(output, dict): | |
raise ValueError("Expected an image but received JSON: {}".format(output)) | |
# If output is raw image data, convert it to a PIL image | |
result_image = Image.open(io.BytesIO(output)) | |
return (translated_prompt, result_image) | |
with gr.Blocks() as demo: | |
gr.Markdown("## Image Generation with Turkish Inputs") | |
gr.Markdown("### [`stabilityai/stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and [`Helsinki-NLP/opus-mt-tr-en`](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) models work under the hood!") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
prompt = gr.Textbox(label="Your prompt (in Turkish or English)") # Accept Turkish or English input | |
with gr.Column(scale=1, min_width=50): | |
btn = gr.Button("Submit") | |
with gr.Accordion("Advanced options", open=False): | |
negative_prompt = gr.Textbox(label="Negative prompt") | |
with gr.Row(): | |
with gr.Column(): | |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=50, | |
info="In how many steps will the denoiser denoise the image?") | |
guidance = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=7, | |
info="Controls how much the text prompt influences the result") | |
with gr.Column(): | |
width = gr.Slider(label="Width", minimum=64, maximum=1024, step=64, value=512) | |
height = gr.Slider(label="Height", minimum=64, maximum=1024, step=64, value=512) | |
translated_text = gr.Textbox(label="Translated text") | |
output = gr.Image(label="Result") | |
btn.click(fn=generate, inputs=[prompt, negative_prompt, steps, guidance, width, height], outputs=[translated_text, output]) | |
gr.close_all() | |
demo.launch(share=True) |