Spaces:
Sleeping
Sleeping
dolphinium
commited on
Commit
•
1c47120
1
Parent(s):
b03e17c
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- README.md +3 -9
- app.py +112 -0
- requirements.txt +3 -0
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji: ⚡
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.43.0
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: image_gen_tr
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.41.0
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import requests, json
|
5 |
+
from PIL import Image
|
6 |
+
import base64
|
7 |
+
from dotenv import load_dotenv, find_dotenv
|
8 |
+
|
9 |
+
_ = load_dotenv(find_dotenv()) # read local .env file
|
10 |
+
hf_api_key = os.environ['HF_API_KEY']
|
11 |
+
|
12 |
+
# Load the translation model (Turkish to English)
|
13 |
+
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-tr-en"
|
14 |
+
|
15 |
+
headers = {
|
16 |
+
"Authorization": f"Bearer {hf_api_key}",
|
17 |
+
"Content-Type": "application/json"
|
18 |
+
}
|
19 |
+
|
20 |
+
# Text-to-image endpoint
|
21 |
+
def get_completion(inputs, parameters=None, ENDPOINT_URL=os.environ['HF_API_TTI_STABILITY_AI']):
|
22 |
+
data = {"inputs": inputs}
|
23 |
+
if parameters is not None:
|
24 |
+
data.update({"parameters": parameters})
|
25 |
+
|
26 |
+
response = requests.post(ENDPOINT_URL, headers=headers, data=json.dumps(data))
|
27 |
+
|
28 |
+
# Check the content type of the response
|
29 |
+
content_type = response.headers.get('Content-Type', '')
|
30 |
+
print(content_type)
|
31 |
+
if 'application/json' in content_type:
|
32 |
+
return json.loads(response.content.decode("utf-8"))
|
33 |
+
elif 'image/' in content_type:
|
34 |
+
return response.content # return raw image data
|
35 |
+
|
36 |
+
response.raise_for_status() # raise an error for unexpected content types
|
37 |
+
|
38 |
+
# A helper function to convert the PIL image to base64
|
39 |
+
def base64_to_pil(img_base64):
|
40 |
+
base64_decoded = base64.b64decode(img_base64)
|
41 |
+
byte_stream = io.BytesIO(base64_decoded)
|
42 |
+
pil_image = Image.open(byte_stream)
|
43 |
+
return pil_image
|
44 |
+
|
45 |
+
def query(payload):
|
46 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
47 |
+
return response.json()
|
48 |
+
|
49 |
+
# Translation function
|
50 |
+
def translate_to_english(text):
|
51 |
+
try:
|
52 |
+
# Translate the input from Turkish to English
|
53 |
+
translation = query({"inputs": text})
|
54 |
+
print(translation)
|
55 |
+
translated_text = translation[0]['translation_text']
|
56 |
+
return translated_text
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Translation error: {e}")
|
59 |
+
return text # If translation fails, return original text
|
60 |
+
|
61 |
+
# Main generation function with translation
|
62 |
+
def generate(prompt, negative_prompt, steps, guidance, width, height):
|
63 |
+
# Translate the prompt to English if it's in Turkish
|
64 |
+
translated_prompt = translate_to_english(prompt)
|
65 |
+
print(f"Translated Prompt: {translated_prompt}")
|
66 |
+
|
67 |
+
params = {
|
68 |
+
"negative_prompt": negative_prompt,
|
69 |
+
"num_inference_steps": steps,
|
70 |
+
"guidance_scale": guidance,
|
71 |
+
"width": width,
|
72 |
+
"height": height
|
73 |
+
}
|
74 |
+
|
75 |
+
output = get_completion(translated_prompt, params)
|
76 |
+
|
77 |
+
# Check if the output is an image (bytes) or JSON (dict)
|
78 |
+
if isinstance(output, dict):
|
79 |
+
raise ValueError("Expected an image but received JSON: {}".format(output))
|
80 |
+
|
81 |
+
# If output is raw image data, convert it to a PIL image
|
82 |
+
result_image = Image.open(io.BytesIO(output))
|
83 |
+
return (translated_prompt, result_image)
|
84 |
+
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
gr.Markdown("## Image Generation with Turkish Inputs")
|
87 |
+
gr.Markdown("### [`stabilityai/stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and [`Helsinki-NLP/opus-mt-tr-en`](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) models work under the hood!")
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column(scale=4):
|
91 |
+
prompt = gr.Textbox(label="Your prompt (in Turkish or English)") # Accept Turkish or English input
|
92 |
+
with gr.Column(scale=1, min_width=50):
|
93 |
+
btn = gr.Button("Submit")
|
94 |
+
|
95 |
+
with gr.Accordion("Advanced options", open=False):
|
96 |
+
negative_prompt = gr.Textbox(label="Negative prompt")
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=50,
|
100 |
+
info="In how many steps will the denoiser denoise the image?")
|
101 |
+
guidance = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=7,
|
102 |
+
info="Controls how much the text prompt influences the result")
|
103 |
+
with gr.Column():
|
104 |
+
width = gr.Slider(label="Width", minimum=64, maximum=1024, step=64, value=512)
|
105 |
+
height = gr.Slider(label="Height", minimum=64, maximum=1024, step=64, value=512)
|
106 |
+
translated_text = gr.Textbox(label="Translated text")
|
107 |
+
output = gr.Image(label="Result")
|
108 |
+
|
109 |
+
btn.click(fn=generate, inputs=[prompt, negative_prompt, steps, guidance, width, height], outputs=[translated_text, output])
|
110 |
+
|
111 |
+
gr.close_all()
|
112 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pillow
|
3 |
+
python-dotenv
|