FLUX.1-merged / app.py
doevent's picture
Update app.py
6f5f465 verified
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
import os
token_hf = os.environ["HF_TOKEN"]
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype)
# pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
# pipe.fuse_lora(lora_scale=0.125)
# pipe.to(device="cuda", dtype=dtype)
# pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
model_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
pipe = FluxPipeline.from_pretrained(
model_id,
torch_dtype=dtype
)
pipe.to(device)
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt = prompt,
# width = width,
# height = height,
# num_inference_steps = num_inference_steps,
# generator = generator,
# guidance_scale=guidance_scale
# ).images[0]
image = pipe(prompt=prompt,
num_inference_steps = num_inference_steps,
height=height,
width=width,
max_sequence_length=256,
generator = generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged)
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
result = gr.Image(label="Result", show_label=False, format="png")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.queue(default_concurrency_limit=10).launch(show_error=True)