Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,963 Bytes
8ccf632 6219e92 06f0278 129447d bcf9dbd 06f0278 bcf9dbd 06f0278 8ccf632 6f5f465 129447d bc0adb1 6f5f465 8ccf632 06f0278 8ccf632 5f53da2 2435446 dd73ce4 54192f0 8ccf632 129447d 704dab3 129447d 390d3b9 8ccf632 06f0278 8ccf632 e2944a6 8ccf632 d60eb79 8ccf632 0ab1b47 caee859 8ccf632 75cc32d be4123d 75cc32d fe3b5bf 8ccf632 b213a9c ceb48e8 b213a9c 8ccf632 0a779d1 8ccf632 2b62414 8ccf632 b213a9c 8ccf632 95de845 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
import os
token_hf = os.environ["HF_TOKEN"]
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype)
# pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
# pipe.fuse_lora(lora_scale=0.125)
# pipe.to(device="cuda", dtype=dtype)
# pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
model_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
pipe = FluxPipeline.from_pretrained(
model_id,
torch_dtype=dtype
)
pipe.to(device)
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt = prompt,
# width = width,
# height = height,
# num_inference_steps = num_inference_steps,
# generator = generator,
# guidance_scale=guidance_scale
# ).images[0]
image = pipe(prompt=prompt,
num_inference_steps = num_inference_steps,
height=height,
width=width,
max_sequence_length=256,
generator = generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged)
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
result = gr.Image(label="Result", show_label=False, format="png")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.queue(default_concurrency_limit=10).launch(show_error=True) |