Spaces:
Sleeping
Sleeping
fix-plot-issue
#1
by
asoria
HF staff
- opened
app.py
CHANGED
@@ -37,7 +37,6 @@ DATASETS_TOPICS_ORGANIZATION = os.getenv(
|
|
37 |
"DATASETS_TOPICS_ORGANIZATION", "datasets-topics"
|
38 |
)
|
39 |
USE_CUML = int(os.getenv("USE_CUML", "1"))
|
40 |
-
USE_LLM_TEXT_GENERATION = int(os.getenv("USE_LLM_TEXT_GENERATION", "1"))
|
41 |
|
42 |
# Use cuml lib only if configured
|
43 |
if USE_CUML:
|
@@ -53,19 +52,17 @@ logging.basicConfig(
|
|
53 |
)
|
54 |
|
55 |
api = HfApi(token=HF_TOKEN)
|
56 |
-
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
57 |
|
58 |
-
# Representation model
|
59 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
60 |
-
|
61 |
-
representation_model = KeyBERTInspired()
|
62 |
vectorizer_model = CountVectorizer(stop_words="english")
|
|
|
63 |
|
64 |
inference_client = InferenceClient(model_id)
|
65 |
|
66 |
|
67 |
def calculate_embeddings(docs):
|
68 |
-
return
|
69 |
|
70 |
|
71 |
def calculate_n_neighbors_and_components(n_rows):
|
@@ -95,7 +92,7 @@ def fit_model(docs, embeddings, n_neighbors, n_components):
|
|
95 |
new_model = BERTopic(
|
96 |
language="english",
|
97 |
# Sub-models
|
98 |
-
embedding_model=
|
99 |
umap_model=umap_model, # Step 2 - UMAP model
|
100 |
hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings
|
101 |
vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics
|
@@ -169,44 +166,146 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
169 |
"",
|
170 |
)
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
base_model
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
)
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
)
|
191 |
-
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
192 |
-
logging.info(f"The following topics are newly found: {new_topics}")
|
193 |
-
base_model = updated_model
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
199 |
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
topics_info = base_model.get_topic_info()
|
204 |
all_topics = base_model.topics_
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
topic_plot = (
|
207 |
base_model.visualize_document_datamap(
|
208 |
docs=all_docs,
|
209 |
topics=all_topics,
|
|
|
210 |
reduced_embeddings=reduced_embeddings_array,
|
211 |
title="",
|
212 |
sub_title=sub_title,
|
@@ -227,192 +326,100 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
227 |
if plot_type == "DataMapPlot"
|
228 |
else base_model.visualize_documents(
|
229 |
docs=all_docs,
|
230 |
-
topics=all_topics,
|
231 |
reduced_embeddings=reduced_embeddings_array,
|
|
|
232 |
title="",
|
233 |
)
|
234 |
)
|
235 |
-
logging.info("Plot done ✓")
|
236 |
-
rows_processed += len(docs)
|
237 |
-
progress = min(rows_processed / limit, 1.0)
|
238 |
-
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
239 |
-
message = (
|
240 |
-
f"Processing topics for full dataset: {rows_processed} of {limit}"
|
241 |
-
if full_processing
|
242 |
-
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
|
243 |
-
)
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
yield (
|
246 |
gr.Accordion(open=False),
|
247 |
topics_info,
|
248 |
topic_plot,
|
249 |
-
gr.Label(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
"",
|
251 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
|
254 |
-
del docs, embeddings, new_model, reduced_embeddings
|
255 |
-
logging.info("Finished processing all data")
|
256 |
-
|
257 |
-
yield (
|
258 |
-
gr.Accordion(open=False),
|
259 |
-
topics_info,
|
260 |
-
topic_plot,
|
261 |
-
gr.Label(
|
262 |
-
{
|
263 |
-
"✅ " + message: 1.0,
|
264 |
-
f"⏳ Generating topic names with {model_id}": 0.0,
|
265 |
-
},
|
266 |
-
visible=True,
|
267 |
-
),
|
268 |
-
"",
|
269 |
-
)
|
270 |
-
|
271 |
-
all_topics = base_model.topics_
|
272 |
-
topics_info = base_model.get_topic_info()
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
output = inference_client.chat_completion(
|
288 |
-
messages=prompt_messages,
|
289 |
-
stream=False,
|
290 |
-
max_tokens=500,
|
291 |
-
top_p=0.8,
|
292 |
-
seed=42,
|
293 |
)
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
topics_info = base_model.get_topic_info()
|
303 |
-
|
304 |
-
topic_plot = (
|
305 |
-
base_model.visualize_document_datamap(
|
306 |
-
docs=all_docs,
|
307 |
-
topics=all_topics,
|
308 |
-
custom_labels=True,
|
309 |
-
reduced_embeddings=reduced_embeddings_array,
|
310 |
-
title="",
|
311 |
-
sub_title=sub_title,
|
312 |
-
width=800,
|
313 |
-
height=700,
|
314 |
-
arrowprops={
|
315 |
-
"arrowstyle": "wedge,tail_width=0.5",
|
316 |
-
"connectionstyle": "arc3,rad=0.05",
|
317 |
-
"linewidth": 0,
|
318 |
-
"fc": "#33333377",
|
319 |
-
},
|
320 |
-
dynamic_label_size=True,
|
321 |
-
# label_wrap_width=12,
|
322 |
-
label_over_points=True,
|
323 |
-
max_font_size=36,
|
324 |
-
min_font_size=4,
|
325 |
)
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
332 |
)
|
333 |
-
)
|
334 |
-
|
335 |
-
dataset_clear_name = dataset.replace("/", "-")
|
336 |
-
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
337 |
-
if plot_type == "DataMapPlot":
|
338 |
-
topic_plot.savefig(plot_png, format="png", dpi=300)
|
339 |
-
else:
|
340 |
-
topic_plot.write_image(plot_png)
|
341 |
-
|
342 |
-
custom_labels = base_model.custom_labels_
|
343 |
-
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
344 |
-
yield (
|
345 |
-
gr.Accordion(open=False),
|
346 |
-
topics_info,
|
347 |
-
topic_plot,
|
348 |
-
gr.Label(
|
349 |
-
{
|
350 |
-
"✅ " + message: 1.0,
|
351 |
-
f"✅ Generating topic names with {model_id}": 1.0,
|
352 |
-
"⏳ Creating Interactive Space": 0.0,
|
353 |
-
},
|
354 |
-
visible=True,
|
355 |
-
),
|
356 |
-
"",
|
357 |
-
)
|
358 |
-
interactive_plot = datamapplot.create_interactive_plot(
|
359 |
-
reduced_embeddings_array,
|
360 |
-
topic_names_array,
|
361 |
-
hover_text=all_docs,
|
362 |
-
title=dataset,
|
363 |
-
sub_title=sub_title.replace(
|
364 |
-
"dataset",
|
365 |
-
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
366 |
-
),
|
367 |
-
enable_search=True,
|
368 |
-
# TODO: Export data to .arrow and also serve it
|
369 |
-
inline_data=True,
|
370 |
-
# offline_data_prefix=dataset_clear_name,
|
371 |
-
initial_zoom_fraction=0.9,
|
372 |
-
cluster_boundary_polygons=True
|
373 |
-
)
|
374 |
-
html_content = str(interactive_plot)
|
375 |
-
html_file_path = f"{dataset_clear_name}.html"
|
376 |
-
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
377 |
-
html_file.write(html_content)
|
378 |
-
|
379 |
-
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
380 |
-
|
381 |
-
space_id = create_space_with_content(
|
382 |
-
api=api,
|
383 |
-
repo_id=repo_id,
|
384 |
-
dataset_id=dataset,
|
385 |
-
html_file_path=html_file_path,
|
386 |
-
plot_file_path=plot_png,
|
387 |
-
space_card=SPACE_REPO_CARD_CONTENT,
|
388 |
-
token=HF_TOKEN,
|
389 |
-
)
|
390 |
-
|
391 |
-
space_link = f"https://huggingface.co/spaces/{space_id}"
|
392 |
-
yield (
|
393 |
-
gr.Accordion(open=False),
|
394 |
-
topics_info,
|
395 |
-
topic_plot,
|
396 |
-
gr.Label(
|
397 |
-
{
|
398 |
-
"✅ " + message: 1.0,
|
399 |
-
f"✅ Generating topic names with {model_id}": 1.0,
|
400 |
-
"✅ Creating Interactive Space": 1.0,
|
401 |
-
},
|
402 |
-
visible=True,
|
403 |
-
),
|
404 |
-
f"[![Go to interactive plot](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue)]({space_link})",
|
405 |
-
)
|
406 |
-
del reduce_umap_model, all_docs, reduced_embeddings_list
|
407 |
-
del (
|
408 |
-
base_model,
|
409 |
-
all_topics,
|
410 |
-
topics_info,
|
411 |
-
topic_plot,
|
412 |
-
topic_names_array,
|
413 |
-
interactive_plot,
|
414 |
-
)
|
415 |
-
cuda.empty_cache()
|
416 |
|
417 |
|
418 |
with gr.Blocks() as demo:
|
@@ -461,11 +468,11 @@ with gr.Blocks() as demo:
|
|
461 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
462 |
|
463 |
gr.Markdown("## Data map")
|
464 |
-
|
465 |
open_space_label = gr.Markdown()
|
466 |
topics_plot = gr.Plot()
|
467 |
-
with gr.Accordion("Topics Info", open=False):
|
468 |
-
|
469 |
gr.HTML(
|
470 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
471 |
)
|
@@ -487,7 +494,7 @@ with gr.Blocks() as demo:
|
|
487 |
data_details_accordion,
|
488 |
topics_df,
|
489 |
topics_plot,
|
490 |
-
|
491 |
open_space_label,
|
492 |
],
|
493 |
)
|
|
|
37 |
"DATASETS_TOPICS_ORGANIZATION", "datasets-topics"
|
38 |
)
|
39 |
USE_CUML = int(os.getenv("USE_CUML", "1"))
|
|
|
40 |
|
41 |
# Use cuml lib only if configured
|
42 |
if USE_CUML:
|
|
|
52 |
)
|
53 |
|
54 |
api = HfApi(token=HF_TOKEN)
|
|
|
55 |
|
|
|
56 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
57 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
58 |
vectorizer_model = CountVectorizer(stop_words="english")
|
59 |
+
representation_model = KeyBERTInspired()
|
60 |
|
61 |
inference_client = InferenceClient(model_id)
|
62 |
|
63 |
|
64 |
def calculate_embeddings(docs):
|
65 |
+
return embedding_model.encode(docs, show_progress_bar=True, batch_size=32)
|
66 |
|
67 |
|
68 |
def calculate_n_neighbors_and_components(n_rows):
|
|
|
92 |
new_model = BERTopic(
|
93 |
language="english",
|
94 |
# Sub-models
|
95 |
+
embedding_model=embedding_model, # Step 1 - Extract embeddings
|
96 |
umap_model=umap_model, # Step 2 - UMAP model
|
97 |
hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings
|
98 |
vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics
|
|
|
166 |
"",
|
167 |
)
|
168 |
|
169 |
+
try:
|
170 |
+
while offset < limit:
|
171 |
+
logging.info(f"----> Getting records from {offset=} with {CHUNK_SIZE=}")
|
172 |
+
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
|
173 |
+
if not docs:
|
174 |
+
break
|
175 |
+
logging.info(f"Got {len(docs)} docs ✓")
|
176 |
+
embeddings = calculate_embeddings(docs)
|
177 |
+
new_model = fit_model(docs, embeddings, n_neighbors, n_components)
|
178 |
+
|
179 |
+
if base_model is None:
|
180 |
+
base_model = new_model
|
181 |
+
logging.info(
|
182 |
+
f"The following topics are newly found: {base_model.topic_labels_}"
|
183 |
+
)
|
184 |
+
else:
|
185 |
+
updated_model = BERTopic.merge_models([base_model, new_model])
|
186 |
+
nr_new_topics = len(set(updated_model.topics_)) - len(
|
187 |
+
set(base_model.topics_)
|
188 |
+
)
|
189 |
+
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
190 |
+
logging.info(f"The following topics are newly found: {new_topics}")
|
191 |
+
base_model = updated_model
|
192 |
+
|
193 |
+
logging.info("Reducing embeddings to 2D")
|
194 |
+
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
195 |
+
reduced_embeddings_list.append(reduced_embeddings)
|
196 |
+
|
197 |
+
all_docs.extend(docs)
|
198 |
+
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
|
199 |
+
logging.info("Reducing embeddings to 2D ✓")
|
200 |
+
|
201 |
+
topics_info = base_model.get_topic_info()
|
202 |
+
all_topics = base_model.topics_
|
203 |
+
logging.info(f"Preparing topics {plot_type} plot")
|
204 |
+
|
205 |
+
topic_plot = (
|
206 |
+
base_model.visualize_document_datamap(
|
207 |
+
docs=all_docs,
|
208 |
+
topics=all_topics,
|
209 |
+
reduced_embeddings=reduced_embeddings_array,
|
210 |
+
title="",
|
211 |
+
sub_title=sub_title,
|
212 |
+
width=800,
|
213 |
+
height=700,
|
214 |
+
arrowprops={
|
215 |
+
"arrowstyle": "wedge,tail_width=0.5",
|
216 |
+
"connectionstyle": "arc3,rad=0.05",
|
217 |
+
"linewidth": 0,
|
218 |
+
"fc": "#33333377",
|
219 |
+
},
|
220 |
+
dynamic_label_size=True,
|
221 |
+
# label_wrap_width=12,
|
222 |
+
label_over_points=True,
|
223 |
+
max_font_size=36,
|
224 |
+
min_font_size=4,
|
225 |
+
)
|
226 |
+
if plot_type == "DataMapPlot"
|
227 |
+
else base_model.visualize_documents(
|
228 |
+
docs=all_docs,
|
229 |
+
topics=all_topics,
|
230 |
+
reduced_embeddings=reduced_embeddings_array,
|
231 |
+
custom_labels=True,
|
232 |
+
title="",
|
233 |
+
)
|
234 |
)
|
235 |
+
logging.info("Plot done ✓")
|
236 |
+
rows_processed += len(docs)
|
237 |
+
progress = min(rows_processed / limit, 1.0)
|
238 |
+
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
239 |
+
message = (
|
240 |
+
f"Processing topics for full dataset: {rows_processed} of {limit}"
|
241 |
+
if full_processing
|
242 |
+
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
|
243 |
)
|
|
|
|
|
|
|
244 |
|
245 |
+
yield (
|
246 |
+
gr.Accordion(open=False),
|
247 |
+
topics_info,
|
248 |
+
topic_plot,
|
249 |
+
gr.Label({"⏳ " + message: progress}, visible=True),
|
250 |
+
"",
|
251 |
+
)
|
252 |
|
253 |
+
offset += CHUNK_SIZE
|
254 |
+
del docs, embeddings, new_model, reduced_embeddings
|
255 |
+
logging.info("Finished processing topic modeling data")
|
256 |
+
|
257 |
+
yield (
|
258 |
+
gr.Accordion(open=False),
|
259 |
+
topics_info,
|
260 |
+
topic_plot,
|
261 |
+
gr.Label(
|
262 |
+
{
|
263 |
+
"✅ " + message: 1.0,
|
264 |
+
f"⏳ Generating topic names with {model_id}": 0.0,
|
265 |
+
},
|
266 |
+
visible=True,
|
267 |
+
),
|
268 |
+
"",
|
269 |
+
)
|
270 |
|
|
|
271 |
all_topics = base_model.topics_
|
272 |
+
topics_info = base_model.get_topic_info()
|
273 |
+
|
274 |
+
new_topics_by_text_generation = {}
|
275 |
+
for _, row in topics_info.iterrows():
|
276 |
+
logging.info(
|
277 |
+
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
278 |
+
)
|
279 |
+
prompt = f"{LLAMA_3_8B_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
|
280 |
+
prompt_messages = [
|
281 |
+
{
|
282 |
+
"role": "system",
|
283 |
+
"content": "You are a helpful, respectful and honest assistant for labeling topics.",
|
284 |
+
},
|
285 |
+
{"role": "user", "content": prompt},
|
286 |
+
]
|
287 |
+
output = inference_client.chat_completion(
|
288 |
+
messages=prompt_messages,
|
289 |
+
stream=False,
|
290 |
+
max_tokens=500,
|
291 |
+
top_p=0.8,
|
292 |
+
seed=42,
|
293 |
+
)
|
294 |
+
inference_response = output.choices[0].message.content
|
295 |
+
logging.info("Inference response:")
|
296 |
+
logging.info(inference_response)
|
297 |
+
new_topics_by_text_generation[row["Topic"]] = inference_response.replace(
|
298 |
+
"Topic=", ""
|
299 |
+
).strip()
|
300 |
+
base_model.set_topic_labels(new_topics_by_text_generation)
|
301 |
+
|
302 |
+
topics_info = base_model.get_topic_info()
|
303 |
+
|
304 |
topic_plot = (
|
305 |
base_model.visualize_document_datamap(
|
306 |
docs=all_docs,
|
307 |
topics=all_topics,
|
308 |
+
custom_labels=True,
|
309 |
reduced_embeddings=reduced_embeddings_array,
|
310 |
title="",
|
311 |
sub_title=sub_title,
|
|
|
326 |
if plot_type == "DataMapPlot"
|
327 |
else base_model.visualize_documents(
|
328 |
docs=all_docs,
|
|
|
329 |
reduced_embeddings=reduced_embeddings_array,
|
330 |
+
custom_labels=True,
|
331 |
title="",
|
332 |
)
|
333 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
dataset_clear_name = dataset.replace("/", "-")
|
336 |
+
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
337 |
+
if plot_type == "DataMapPlot":
|
338 |
+
topic_plot.savefig(plot_png, format="png", dpi=300)
|
339 |
+
else:
|
340 |
+
topic_plot.write_image(plot_png)
|
341 |
+
|
342 |
+
custom_labels = base_model.custom_labels_
|
343 |
+
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
344 |
yield (
|
345 |
gr.Accordion(open=False),
|
346 |
topics_info,
|
347 |
topic_plot,
|
348 |
+
gr.Label(
|
349 |
+
{
|
350 |
+
"✅ " + message: 1.0,
|
351 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
352 |
+
"⏳ Creating Interactive Space": 0.0,
|
353 |
+
},
|
354 |
+
visible=True,
|
355 |
+
),
|
356 |
"",
|
357 |
)
|
358 |
+
interactive_plot = datamapplot.create_interactive_plot(
|
359 |
+
reduced_embeddings_array,
|
360 |
+
topic_names_array,
|
361 |
+
hover_text=all_docs,
|
362 |
+
title=dataset,
|
363 |
+
sub_title=sub_title.replace(
|
364 |
+
"dataset",
|
365 |
+
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
366 |
+
),
|
367 |
+
enable_search=True,
|
368 |
+
# TODO: Export data to .arrow and also serve it
|
369 |
+
inline_data=True,
|
370 |
+
# offline_data_prefix=dataset_clear_name,
|
371 |
+
initial_zoom_fraction=0.8,
|
372 |
+
)
|
373 |
+
html_content = str(interactive_plot)
|
374 |
+
html_file_path = f"{dataset_clear_name}.html"
|
375 |
+
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
376 |
+
html_file.write(html_content)
|
377 |
+
|
378 |
+
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
379 |
+
|
380 |
+
space_id = create_space_with_content(
|
381 |
+
api=api,
|
382 |
+
repo_id=repo_id,
|
383 |
+
dataset_id=dataset,
|
384 |
+
html_file_path=html_file_path,
|
385 |
+
plot_file_path=plot_png,
|
386 |
+
space_card=SPACE_REPO_CARD_CONTENT,
|
387 |
+
token=HF_TOKEN,
|
388 |
+
)
|
389 |
|
390 |
+
space_link = f"https://huggingface.co/spaces/{space_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
+
yield (
|
393 |
+
gr.Accordion(open=False),
|
394 |
+
topics_info,
|
395 |
+
topic_plot,
|
396 |
+
gr.Label(
|
397 |
+
{
|
398 |
+
"✅ " + message: 1.0,
|
399 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
400 |
+
"✅ Creating Interactive Space": 1.0,
|
401 |
+
},
|
402 |
+
visible=True,
|
403 |
+
),
|
404 |
+
f"[![Go to interactive plot](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue)]({space_link})",
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
)
|
406 |
+
del reduce_umap_model, all_docs, reduced_embeddings_list
|
407 |
+
del (
|
408 |
+
base_model,
|
409 |
+
all_topics,
|
410 |
+
topics_info,
|
411 |
+
topic_names_array,
|
412 |
+
interactive_plot,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
)
|
414 |
+
cuda.empty_cache()
|
415 |
+
except Exception as error:
|
416 |
+
return (
|
417 |
+
gr.Accordion(open=True),
|
418 |
+
gr.DataFrame(value=[], interactive=False, visible=True),
|
419 |
+
gr.Plot(value=None, visible=True),
|
420 |
+
gr.Label({f"❌ Error: {error}": 0.0}, visible=True),
|
421 |
+
"",
|
422 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
|
425 |
with gr.Blocks() as demo:
|
|
|
468 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
469 |
|
470 |
gr.Markdown("## Data map")
|
471 |
+
progress_label = gr.Label(visible=False, show_label=False)
|
472 |
open_space_label = gr.Markdown()
|
473 |
topics_plot = gr.Plot()
|
474 |
+
# with gr.Accordion("Topics Info", open=False):
|
475 |
+
topics_df = gr.DataFrame(interactive=False, visible=True)
|
476 |
gr.HTML(
|
477 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
478 |
)
|
|
|
494 |
data_details_accordion,
|
495 |
topics_df,
|
496 |
topics_plot,
|
497 |
+
progress_label,
|
498 |
open_space_label,
|
499 |
],
|
500 |
)
|