microinterp / app.py
ccm's picture
Create app.py
6fbdeae
import random
import gradio
import numpy
import tensorflow
import math
from tensorflow.python.framework.ops import disable_eager_execution
import huggingface_hub # for loading model
import matplotlib.pyplot
# Because important
# disable_eager_execution()
def basic_box_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
# Creates the outside edges of the box
for i in range(image_size):
for j in range(image_size):
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
A[i][j] = 1
return A
def back_slash_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == j:
A[i][j] = 1
return A
def forward_slash_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == (image_size - 1) - j:
A[i][j] = 1
return A
def hot_dog_array(image_size):
# Places pixels down the vertical axis to split the box
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def hamburger_array(image_size):
# Places pixels across the horizontal axis to split the box
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def center_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
A[i][j] = 1
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def update_array(array_original, array_new, image_size):
A = array_original
for i in range(image_size):
for j in range(image_size):
if array_new[i][j] == 1:
A[i][j] = 1
return A
def add_pixels(array_original, additional_pixels, image_size):
# Adds pixels to the thickness of each component of the box
A = array_original
A_updated = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for dens in range(additional_pixels):
for i in range(1, image_size - 1):
for j in range(1, image_size - 1):
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
A_updated[i][j] = 1
A = update_array(A, A_updated, image_size)
return A
def basic_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def horizontal_vertical_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Place pixels across the horizontal and vertical axes to split the box
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def diagonal_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Add pixels along the diagonals of the box
A = update_array(A, back_slash_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# Adds pixels to the thickness of each component of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, forward_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hamburger_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
# A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
# A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def center_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, center_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
# import tensorflow as tf
#
# sess = tf.compat.v1.Session()
#
# from keras import backend as K
#
# K.set_session(sess)
endpoint_options = (
"basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in numpy.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
def generate_unit_cell(t, d, th):
return globals()[t](int(th), float(d), 28)
def interpolate(t1, t2, d1, d2, th1, th2, steps):
# Load the decoder model
decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
# decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
# # import the encoder model architecture
# json_file_loaded = open('data/model.json', 'r')
# loaded_model_json = json_file_loaded.read()
# load model using the saved json file
# encoder_model_boxes = tensorflow.keras.models.model_from_json(loaded_model_json)
# load weights into newly loaded_model
# encoder_model_boxes.load_weights('data/model_tf')
encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
num_internal = int(steps)
number_1 = generate_unit_cell(t1, d1, th1)
number_2 = generate_unit_cell(t2, d2, th2)
# resize the array to match the prediction size requirement
number_1_expand = numpy.expand_dims(numpy.expand_dims(number_1, axis=2), axis=0)
number_2_expand = numpy.expand_dims(numpy.expand_dims(number_2, axis=2), axis=0)
# Determine the latent point that will represent our desired number
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
num_interp = num_internal # the number of images to be pictured
latent_matrix = [] # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
new_column = numpy.linspace(latent_point_1[column], latent_point_2[column], num_interp)
latent_matrix.append(new_column)
latent_matrix = numpy.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
# plot_rows = 2
# plot_columns = num_interp + 2
predicted_interps = [number_1_expand[0, :, :, 0]]
for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images
generated_image = decoder_model_boxes.predict(numpy.array([latent_matrix[latent_point - 2]]))[
0] # generates an interpolated image based on the latent point
predicted_interps.append(generated_image[:, :, -1])
predicted_interps.append(number_2_expand[0, :, :, 0])
transition_region = predicted_interps[0]
for i in range(len(predicted_interps) - 1):
transition_region = numpy.hstack((transition_region, predicted_interps[i + 1]))
return numpy.round(transition_region)
t1 = gradio.Dropdown(endpoint_options, label="Type 1", value="hamburger_box")
d1 = gradio.Dropdown(density_options, label="Density 1", value="1.00")
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value="2")
t2 = gradio.Dropdown(endpoint_options, label="Type 2", value="hot_dog_box")
d2 = gradio.Dropdown(density_options, label="Density 2", value="1.00")
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value="2")
steps = gradio.Dropdown(interpolation_options, label="Interpolation Length", value=random.choice(interpolation_options))
img = gradio.Image(label="Transition")
examples = gradio.Examples(examples=[["hamburger_box", "hot_dog_box", "1.00", "1.00", "2", "2", "20"], ["hamburger_box", "hot_dog_box", "0.10", "1.00", "10", "10", "5"]], fn=interpolate, inputs=[t1, t2, d1, d2, th1, th2, steps], outputs=[img])
lattice_interpolation_inetrface = gradio.Interface(
fn = interpolate, inputs=[t1, t2, d1, d2, th1, th2, steps], outputs=[img]
)
# Loadin the model
model1 = huggingface_hub.from_pretrained_keras("cmudrc/microstructure-colorization")
# Get the color map by name:
cm = matplotlib.pyplot.get_cmap('RdBu')
#simple image scaling to (nR x nC) size
def scale(im, nR, nC):
nR0 = len(im) # source number of rows
nC0 = len(im[0]) # source number of columns
return numpy.array([[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]
for c in range(nC)] for r in range(nR)])
# Prediction function
def predict(mask):
print(mask)
scaled_mask = numpy.ones((101, 636)) if mask is None else numpy.round(scale(mask, 101, 636)/255.0)
print(scaled_mask)
X = scaled_mask[numpy.newaxis, :, :, numpy.newaxis]
print(X.shape)
v = model1.predict(X)
print(v)
measure = max(v.max(), -v.min())
output = (v / measure)
legend = "<h2>Strain</h2><table style=\"width:100%\"><tr>"
for i in range(11):
color = cm(i/10.0)[:3]
value = -measure + i*2*measure/10
print(sum(list(color)))
hex = matplotlib.colors.to_hex(list(color))
text_color = "black" if sum(list(color)) > 2.0 else "white"
legend = legend + f"<td style=\"background-color: {hex}; color: {text_color}\">{value:+.2e}</td>"
legend = legend + "</tr></table>"
return cm((numpy.multiply(output[0, :, :, 0], scaled_mask)+1.0)/2.0), cm((numpy.multiply(output[0, :, :, 1], scaled_mask)+1.0)/2.0), cm((numpy.multiply(output[0, :, :, 2], scaled_mask)+1.0)/2.0), legend
mask = gradio.Image(image_mode="L", source="canvas", label="microstructure")
exx = gradio.Image(label="ε-xx")
eyy = gradio.Image(label="ε-yy")
exy = gradio.Image(label="ε-xy")
legend = gradio.HTML(label="", value="")
microstructure_interface = gradio.Interface(
fn=predict,
inputs=[mask],
outputs=[exx, eyy, exy, legend]
)
gradio.Series(
lattice_interpolation_inetrface,
microstructure_interface
).launch(debug=True)