File size: 14,705 Bytes
6fbdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import random
import gradio
import numpy
import tensorflow
import math
from tensorflow.python.framework.ops import disable_eager_execution
import huggingface_hub # for loading model
import matplotlib.pyplot

# Because important
# disable_eager_execution()

def basic_box_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    # Creates the outside edges of the box
    for i in range(image_size):
        for j in range(image_size):
            if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
                A[i][j] = 1
    return A


def back_slash_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == j:
                A[i][j] = 1
    return A


def forward_slash_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == (image_size - 1) - j:
                A[i][j] = 1
    return A


def hot_dog_array(image_size):
    # Places pixels down the vertical axis to split the box
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def hamburger_array(image_size):
    # Places pixels across the horizontal axis to split the box
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def center_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
            if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
                A[i][j] = 1
            if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
            if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def update_array(array_original, array_new, image_size):
    A = array_original
    for i in range(image_size):
        for j in range(image_size):
            if array_new[i][j] == 1:
                A[i][j] = 1
    return A


def add_pixels(array_original, additional_pixels, image_size):
    # Adds pixels to the thickness of each component of the box
    A = array_original
    A_updated = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for dens in range(additional_pixels):
        for i in range(1, image_size - 1):
            for j in range(1, image_size - 1):
                if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
                    A_updated[i][j] = 1
        A = update_array(A, A_updated, image_size)
    return A


def basic_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def horizontal_vertical_box_split(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box
    # Place pixels across the horizontal and vertical axes to split the box
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def diagonal_box_split(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box

    # Add pixels along the diagonals of the box
    A = update_array(A, back_slash_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)

    # Adds pixels to the thickness of each component of the box
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def back_slash_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def forward_slash_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def hot_dog_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def hamburger_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hamburger_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def forward_slash_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    # A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def back_slash_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    # A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_hot_dog_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    # A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_hamburger_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    # A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def center_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, center_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


# import tensorflow as tf
#
# sess = tf.compat.v1.Session()
#
# from keras import backend as K
#
# K.set_session(sess)



endpoint_options = (
"basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in numpy.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]


def generate_unit_cell(t, d, th):
    return globals()[t](int(th), float(d), 28)


def interpolate(t1, t2, d1, d2, th1, th2, steps):
    # Load the decoder model
    decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
    # decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)

    # # import the encoder model architecture
    # json_file_loaded = open('data/model.json', 'r')
    # loaded_model_json = json_file_loaded.read()

    # load model using the saved json file
    # encoder_model_boxes = tensorflow.keras.models.model_from_json(loaded_model_json)

    # load weights into newly loaded_model
    # encoder_model_boxes.load_weights('data/model_tf')
    encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
    
    num_internal = int(steps)
    number_1 = generate_unit_cell(t1, d1, th1)
    number_2 = generate_unit_cell(t2, d2, th2)

    # resize the array to match the prediction size requirement
    number_1_expand = numpy.expand_dims(numpy.expand_dims(number_1, axis=2), axis=0)
    number_2_expand = numpy.expand_dims(numpy.expand_dims(number_2, axis=2), axis=0)

    # Determine the latent point that will represent our desired number
    latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
    latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]

    latent_dimensionality = len(latent_point_1)  # define the dimensionality of the latent space
    num_interp = num_internal  # the number of images to be pictured
    latent_matrix = []  # This will contain the latent points of the interpolation
    for column in range(latent_dimensionality):
        new_column = numpy.linspace(latent_point_1[column], latent_point_2[column], num_interp)
        latent_matrix.append(new_column)
    latent_matrix = numpy.array(latent_matrix).T  # Transposes the matrix so that each row can be easily indexed

    # plot_rows = 2
    # plot_columns = num_interp + 2

    predicted_interps = [number_1_expand[0, :, :, 0]]

    for latent_point in range(2, num_interp + 2):  # cycles the latent points through the decoder model to create images
        generated_image = decoder_model_boxes.predict(numpy.array([latent_matrix[latent_point - 2]]))[
            0]  # generates an interpolated image based on the latent point
        predicted_interps.append(generated_image[:, :, -1])

    predicted_interps.append(number_2_expand[0, :, :, 0])

    transition_region = predicted_interps[0]
    for i in range(len(predicted_interps) - 1):
        transition_region = numpy.hstack((transition_region, predicted_interps[i + 1]))

    return numpy.round(transition_region)


t1 = gradio.Dropdown(endpoint_options, label="Type 1", value="hamburger_box")
d1 = gradio.Dropdown(density_options, label="Density 1", value="1.00")
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value="2")

t2 = gradio.Dropdown(endpoint_options, label="Type 2", value="hot_dog_box")
d2 = gradio.Dropdown(density_options, label="Density 2", value="1.00")
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value="2")

steps = gradio.Dropdown(interpolation_options, label="Interpolation Length", value=random.choice(interpolation_options))
img = gradio.Image(label="Transition")
examples = gradio.Examples(examples=[["hamburger_box", "hot_dog_box", "1.00", "1.00", "2", "2", "20"], ["hamburger_box", "hot_dog_box", "0.10", "1.00", "10", "10", "5"]], fn=interpolate, inputs=[t1, t2, d1, d2, th1, th2, steps], outputs=[img])

lattice_interpolation_inetrface = gradio.Interface(
    fn = interpolate, inputs=[t1, t2, d1, d2, th1, th2, steps], outputs=[img]
)

# Loadin the model
model1 = huggingface_hub.from_pretrained_keras("cmudrc/microstructure-colorization")

# Get the color map by name:
cm = matplotlib.pyplot.get_cmap('RdBu')

#simple image scaling to (nR x nC) size
def scale(im, nR, nC):
  nR0 = len(im)     # source number of rows 
  nC0 = len(im[0])  # source number of columns 
  return numpy.array([[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]  
             for c in range(nC)] for r in range(nR)])


# Prediction function
def predict(mask):
    print(mask)
    scaled_mask = numpy.ones((101, 636)) if mask is None else numpy.round(scale(mask, 101, 636)/255.0)
    print(scaled_mask)
    X = scaled_mask[numpy.newaxis, :, :, numpy.newaxis]    
    print(X.shape)
    v = model1.predict(X)
    print(v)
    measure = max(v.max(), -v.min())
    output = (v / measure)
    legend = "<h2>Strain</h2><table style=\"width:100%\"><tr>"
    for i in range(11):
        color = cm(i/10.0)[:3]
        value = -measure + i*2*measure/10
        print(sum(list(color)))
        hex = matplotlib.colors.to_hex(list(color))
        text_color = "black" if sum(list(color)) > 2.0 else "white"
        legend = legend + f"<td style=\"background-color: {hex}; color: {text_color}\">{value:+.2e}</td>"
    legend = legend + "</tr></table>"
    return cm((numpy.multiply(output[0, :, :, 0], scaled_mask)+1.0)/2.0), cm((numpy.multiply(output[0, :, :, 1], scaled_mask)+1.0)/2.0), cm((numpy.multiply(output[0, :, :, 2], scaled_mask)+1.0)/2.0), legend

mask = gradio.Image(image_mode="L", source="canvas", label="microstructure")    

exx = gradio.Image(label="ε-xx") 
eyy = gradio.Image(label="ε-yy") 
exy = gradio.Image(label="ε-xy")
legend = gradio.HTML(label="", value="")

microstructure_interface = gradio.Interface(
    fn=predict,
    inputs=[mask],
    outputs=[exx, eyy, exy, legend]
)

gradio.Series(
    lattice_interpolation_inetrface, 
    microstructure_interface
).launch(debug=True)