Spaces:
Running
Running
from home import read_markdown_file | |
import streamlit as st | |
def app(): | |
st.title("Examples & Applications") | |
st.write( | |
""" | |
## Image Retrieval | |
Even though we trained the Italian CLIP model on way less examples than the original | |
OpenAI's CLIP, our training choices and quality datasets led to impressive results! | |
Here, we collected few of **the most impressive text-image associations** learned by our model. | |
Remember you can head any time to the **Text to Image** section of the demo to test | |
your own π€ Italian π€ queries! | |
""" | |
) | |
st.markdown("### 1. Actors in Scenes") | |
col1, col2 = st.beta_columns(2) | |
col1.subheader("una coppia con il tramonto sullo sfondo") | |
col1.markdown("*a couple with the sunset in the background*") | |
col1.image("static/img/examples/couple_1.jpeg") | |
col2.subheader("una coppia che passeggia sulla spiaggia") | |
col2.markdown("*a couple walking on the beach*") | |
col2.image("static/img/examples/couple_2.jpeg") | |
st.subheader("una coppia che passeggia sulla spiaggia al tramonto") | |
st.markdown("*a couple walking on the beach at sunset*") | |
st.image("static/img/examples/couple_3.jpeg") | |