Spaces:
Running
Running
Add Examples & Applications
Browse files- app.py +9 -3
- examples.py +35 -0
- static/img/examples/couple_1.jpeg +0 -0
- static/img/examples/couple_2.jpeg +0 -0
- static/img/examples/couple_3.jpeg +0 -0
app.py
CHANGED
@@ -2,14 +2,20 @@ import streamlit as st
|
|
2 |
import image2text
|
3 |
import text2image
|
4 |
import home
|
|
|
5 |
from PIL import Image
|
6 |
|
7 |
-
PAGES = {
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
st.sidebar.title("Explore our CLIP-Italian demo")
|
10 |
|
11 |
-
logo = Image.open(
|
12 |
-
st.sidebar.image(logo, caption=
|
13 |
|
14 |
page = st.sidebar.radio("", list(PAGES.keys()))
|
15 |
PAGES[page].app()
|
|
|
2 |
import image2text
|
3 |
import text2image
|
4 |
import home
|
5 |
+
import examples
|
6 |
from PIL import Image
|
7 |
|
8 |
+
PAGES = {
|
9 |
+
"Introduction": home,
|
10 |
+
"Text to Image": text2image,
|
11 |
+
"Image to Text": image2text,
|
12 |
+
"Examples & Applications": examples,
|
13 |
+
}
|
14 |
|
15 |
st.sidebar.title("Explore our CLIP-Italian demo")
|
16 |
|
17 |
+
logo = Image.open("static/img/clip_italian_logo.png")
|
18 |
+
st.sidebar.image(logo, caption="CLIP-Italian logo")
|
19 |
|
20 |
page = st.sidebar.radio("", list(PAGES.keys()))
|
21 |
PAGES[page].app()
|
examples.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from home import read_markdown_file
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
|
5 |
+
def app():
|
6 |
+
st.title("Examples & Applications")
|
7 |
+
st.write(
|
8 |
+
"""
|
9 |
+
|
10 |
+
## Image Retrieval
|
11 |
+
|
12 |
+
Even though we trained the Italian CLIP model on way less examples than the original
|
13 |
+
OpenAI's CLIP, our training choices and quality datasets led to impressive results!
|
14 |
+
Here, we collected few of **the most impressive text-image associations** learned by our model.
|
15 |
+
|
16 |
+
Remember you can head any time to the **Text to Image** section of the demo to test
|
17 |
+
your own 🤌 Italian 🤌 queries!
|
18 |
+
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
|
22 |
+
st.markdown("### 1. Actors in Scenes")
|
23 |
+
|
24 |
+
col1, col2 = st.beta_columns(2)
|
25 |
+
col1.subheader("una coppia con il tramonto sullo sfondo")
|
26 |
+
col1.markdown("*a couple with the sunset in the background*")
|
27 |
+
col1.image("static/img/examples/couple_1.jpeg")
|
28 |
+
|
29 |
+
col2.subheader("una coppia che passeggia sulla spiaggia")
|
30 |
+
col2.markdown("*a couple walking on the beach*")
|
31 |
+
col2.image("static/img/examples/couple_2.jpeg")
|
32 |
+
|
33 |
+
st.subheader("una coppia che passeggia sulla spiaggia al tramonto")
|
34 |
+
st.markdown("*a couple walking on the beach at sunset*")
|
35 |
+
st.image("static/img/examples/couple_3.jpeg")
|
static/img/examples/couple_1.jpeg
ADDED
static/img/examples/couple_2.jpeg
ADDED
static/img/examples/couple_3.jpeg
ADDED