File size: 2,666 Bytes
da172d6
 
 
 
 
3922ac7
 
 
da172d6
 
 
 
 
 
 
 
a519b9e
da172d6
 
 
 
 
a519b9e
da172d6
29302cd
 
 
 
da172d6
 
 
 
 
 
 
 
 
 
 
 
3ca8c75
 
a519b9e
3ca8c75
 
 
 
 
 
 
 
 
 
3922ac7
 
04e5920
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from home import read_markdown_file
import streamlit as st


def app():
    #st.title("Examples & Applications")
    st.markdown("<h1 style='text-align: center; color: #CD212A;'> Examples & Applications </h1>", unsafe_allow_html=True)
    st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Complex Queries -Image Retrieval </h2>", unsafe_allow_html=True)
    st.write(
        """
        

        Even though we trained the Italian CLIP model on way less examples than the original
        OpenAI's CLIP, our training choices and quality datasets led to impressive results!
        Here, we collected few of **the most impressive text-image associations** learned by our model.
        
        Remember you can head to the **Text to Image** section of the demo at any time to test your own🤌 Italian queries!
        
        """
    )

    st.markdown("### 1. Actors in Scenes")
    st.markdown("These examples comes from the CC dataset")

    st.subheader("una coppia")
    st.markdown("*a couple*")
    st.image("static/img/examples/couple_0.jpeg")

    col1, col2 = st.beta_columns(2)
    col1.subheader("una coppia con il tramonto sullo sfondo")
    col1.markdown("*a couple with the sunset in the background*")
    col1.image("static/img/examples/couple_1.jpeg")

    col2.subheader("una coppia che passeggia sulla spiaggia")
    col2.markdown("*a couple walking on the beach*")
    col2.image("static/img/examples/couple_2.jpeg")

    st.subheader("una coppia che passeggia sulla spiaggia al tramonto")
    st.markdown("*a couple walking on the beach at sunset*")
    st.image("static/img/examples/couple_3.jpeg")

    st.markdown("### 2. Dresses")
    st.markdown("These examples comes from the Unsplash dataset")

    col1, col2 = st.beta_columns(2)
    col1.subheader("un vestito primavrile")
    col1.markdown("*a dress for the spring*")
    col1.image("static/img/examples/vestito1.png")

    col2.subheader("un vestito autunnale")
    col2.markdown("*a dress for the autumn*")
    col2.image("static/img/examples/vestito_autunnale.png")

    #st.markdown("## Image Classification")
    st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Zero Shot Image Classification </h2>", unsafe_allow_html=True)
    st.markdown("We report this cool example provided by the "
                "[DALLE-mini team](https://github.com/borisdayma/dalle-mini). "
                "Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?")

    st.image("static/img/examples/dalle_mini.png")
    st.markdown("It seems it's half an armchair and half an avocado! We thank the team for the great idea :)")