Spaces:
Runtime error
Runtime error
set intra op threads
#5
by
sayakpaul
HF staff
- opened
app.py
CHANGED
@@ -1,31 +1,36 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
import sys
|
4 |
import csv
|
5 |
-
import
|
|
|
|
|
6 |
import cv2
|
7 |
-
|
8 |
import matplotlib.pyplot as plt
|
|
|
9 |
import onnxruntime as ort
|
|
|
10 |
|
11 |
ade_palette = []
|
12 |
labels_list = []
|
13 |
|
14 |
csv.field_size_limit(sys.maxsize)
|
15 |
|
16 |
-
with open(r
|
17 |
for line in fp:
|
18 |
labels_list.append(line[:-1])
|
19 |
|
20 |
-
with open(r
|
21 |
for line in fp:
|
22 |
-
|
23 |
-
|
24 |
|
25 |
colormap = np.asarray(ade_palette)
|
26 |
|
27 |
-
model_filename =
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def label_to_color_image(label):
|
@@ -37,6 +42,7 @@ def label_to_color_image(label):
|
|
37 |
|
38 |
return colormap[label]
|
39 |
|
|
|
40 |
def draw_plot(pred_img, seg):
|
41 |
fig = plt.figure(figsize=(20, 15))
|
42 |
|
@@ -44,7 +50,7 @@ def draw_plot(pred_img, seg):
|
|
44 |
|
45 |
plt.subplot(grid_spec[0])
|
46 |
plt.imshow(pred_img)
|
47 |
-
plt.axis(
|
48 |
|
49 |
LABEL_NAMES = np.asarray(labels_list)
|
50 |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
@@ -59,19 +65,20 @@ def draw_plot(pred_img, seg):
|
|
59 |
ax.tick_params(width=0.0, labelsize=25)
|
60 |
return fig
|
61 |
|
|
|
62 |
def sepia(input_img):
|
63 |
img = cv2.imread(input_img)
|
64 |
img = cv2.resize(img, (640, 640)).astype(np.float32)
|
65 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
66 |
img_batch = np.expand_dims(img, axis=0)
|
67 |
img_batch = np.transpose(img_batch, (0, 3, 1, 2))
|
68 |
-
|
69 |
logits = sess.run(None, {"pixel_values": img_batch})[0]
|
70 |
|
71 |
logits = np.transpose(logits, (0, 2, 3, 1))
|
72 |
-
seg = np.argmax(logits, axis=-1)[0].astype(
|
73 |
-
seg = cv2.resize(seg, (640, 640)).astype(
|
74 |
-
|
75 |
color_seg = np.zeros(
|
76 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
77 |
) # height, width, 3
|
@@ -84,11 +91,12 @@ def sepia(input_img):
|
|
84 |
|
85 |
# Show image + mask
|
86 |
pred_img = img * 0.5 + color_seg * 0.5
|
87 |
-
pred_img = pred_img.astype(np.uint8)
|
88 |
|
89 |
fig = draw_plot(pred_img, seg)
|
90 |
return fig
|
91 |
|
|
|
92 |
title = "SegFormer(ADE20k) in TensorFlow"
|
93 |
description = """
|
94 |
|
@@ -96,12 +104,14 @@ This is demo TensorFlow SegFormer from 🤗 `transformers` official package. The
|
|
96 |
|
97 |
"""
|
98 |
|
99 |
-
demo = gr.Interface(
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import csv
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
import cv2
|
6 |
+
import gradio as gr
|
7 |
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
import onnxruntime as ort
|
10 |
+
from matplotlib import gridspec
|
11 |
|
12 |
ade_palette = []
|
13 |
labels_list = []
|
14 |
|
15 |
csv.field_size_limit(sys.maxsize)
|
16 |
|
17 |
+
with open(r"labels.txt", "r") as fp:
|
18 |
for line in fp:
|
19 |
labels_list.append(line[:-1])
|
20 |
|
21 |
+
with open(r"ade_palette.txt", "r") as fp:
|
22 |
for line in fp:
|
23 |
+
tmp_list = list(map(int, line[:-1].strip("][").split(", ")))
|
24 |
+
ade_palette.append(tmp_list)
|
25 |
|
26 |
colormap = np.asarray(ade_palette)
|
27 |
|
28 |
+
model_filename = "segformer-b5-finetuned-ade-640-640.onnx"
|
29 |
+
sess_options = ort.SessionOptions()
|
30 |
+
sess_options.intra_op_num_threads = os.cpu_count()
|
31 |
+
sess = ort.InferenceSession(
|
32 |
+
model_filename, sess_options, providers=["CPUExecutionProvider"]
|
33 |
+
)
|
34 |
|
35 |
|
36 |
def label_to_color_image(label):
|
|
|
42 |
|
43 |
return colormap[label]
|
44 |
|
45 |
+
|
46 |
def draw_plot(pred_img, seg):
|
47 |
fig = plt.figure(figsize=(20, 15))
|
48 |
|
|
|
50 |
|
51 |
plt.subplot(grid_spec[0])
|
52 |
plt.imshow(pred_img)
|
53 |
+
plt.axis("off")
|
54 |
|
55 |
LABEL_NAMES = np.asarray(labels_list)
|
56 |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
|
|
65 |
ax.tick_params(width=0.0, labelsize=25)
|
66 |
return fig
|
67 |
|
68 |
+
|
69 |
def sepia(input_img):
|
70 |
img = cv2.imread(input_img)
|
71 |
img = cv2.resize(img, (640, 640)).astype(np.float32)
|
72 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
73 |
img_batch = np.expand_dims(img, axis=0)
|
74 |
img_batch = np.transpose(img_batch, (0, 3, 1, 2))
|
75 |
+
|
76 |
logits = sess.run(None, {"pixel_values": img_batch})[0]
|
77 |
|
78 |
logits = np.transpose(logits, (0, 2, 3, 1))
|
79 |
+
seg = np.argmax(logits, axis=-1)[0].astype("float32")
|
80 |
+
seg = cv2.resize(seg, (640, 640)).astype("uint8")
|
81 |
+
|
82 |
color_seg = np.zeros(
|
83 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
84 |
) # height, width, 3
|
|
|
91 |
|
92 |
# Show image + mask
|
93 |
pred_img = img * 0.5 + color_seg * 0.5
|
94 |
+
pred_img = pred_img.astype(np.uint8)
|
95 |
|
96 |
fig = draw_plot(pred_img, seg)
|
97 |
return fig
|
98 |
|
99 |
+
|
100 |
title = "SegFormer(ADE20k) in TensorFlow"
|
101 |
description = """
|
102 |
|
|
|
104 |
|
105 |
"""
|
106 |
|
107 |
+
demo = gr.Interface(
|
108 |
+
sepia,
|
109 |
+
gr.inputs.Image(type="filepath"),
|
110 |
+
outputs=["plot"],
|
111 |
+
examples=["ADE_val_00000001.jpeg"],
|
112 |
+
allow_flagging="never",
|
113 |
+
title=title,
|
114 |
+
description=description,
|
115 |
+
)
|
116 |
+
|
117 |
+
demo.launch()
|