File size: 8,707 Bytes
aa0eed8
3d34f94
92fb7b8
031211a
8279036
aa0eed8
32a4665
8279036
0c8e3ae
 
 
 
 
 
2e933f4
32a4665
 
 
 
 
 
 
 
9f6122c
 
32a4665
 
 
 
 
 
 
 
9f6122c
 
32a4665
 
 
 
 
 
 
 
 
 
 
 
 
8279036
32a4665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8279036
 
 
 
 
 
 
 
 
 
 
 
 
 
99c5eee
8279036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c5eee
8279036
99c5eee
29455b5
53ed856
39bf620
84782eb
53ed856
aaf4e3a
 
 
 
 
 
 
39bf620
84782eb
aaf4e3a
881c209
 
 
 
 
 
39bf620
84782eb
881c209
 
53ed856
453ee12
53ed856
 
9ea93d2
453ee12
d06678c
39bf620
84782eb
453ee12
 
a81c66e
6f626b7
 
79f31ae
c73be41
 
2a99c22
6f626b7
51c03d5
 
 
 
 
 
9f6122c
51c03d5
 
8f66d0d
0cf7f1c
d510ef1
ce170dd
106d733
 
 
 
a75468b
 
ea10685
 
9e1f243
ea10685
 
 
a906963
 
ea10685
a81c66e
 
 
ce170dd
a81c66e
9f6122c
51c03d5
 
cee6a57
 
 
 
39bf620
84782eb
cee6a57
9f6122c
1d8c0f6
 
84782eb
1d8c0f6
 
 
 
84782eb
1d8c0f6
3017744
32a4665
 
 
 
 
0c8e3ae
32a4665
 
 
0c8e3ae
32a4665
 
 
0c8e3ae
32a4665
 
 
0c8e3ae
32a4665
 
 
 
9f6122c
32a4665
80336e1
 
 
32a4665
 
 
80336e1
 
 
32a4665
 
 
d42fd6b
9f6122c
 
 
106d733
84782eb
9f6122c
6f626b7
53ed856
9f6122c
cee6a57
 
9f6122c
 
51c03d5
9f6122c
a030fa6
9f6122c
1679686
9f6122c
 
19797f3
 
c73be41
431abc0
c097c3c
39bf620
0d63545
19797f3
8fae4d3
c097c3c
 
6f626b7
 
 
d42fd6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gradio as gr
import json, openai, os, time

from openai import OpenAI
from utils import function_to_schema, show_json

# Tools

triage_agent, sales_agent, issues_repairs_agent = None, None, None

def transfer_to_triage_agent():
    """Call this if the user brings up a topic outside of your purview,
    including escalating to human."""
    set_current_agent(triage_agent)

def transfer_to_sales_agent():
    """Use for anything sales or buying related."""
    set_current_agent(sales_agent)

def transfer_to_issues_repairs_agent():
    """Use for issues, repairs, or refunds."""
    set_current_agent(issues_repairs_agent)

#

def escalate_to_human(summary):
    """Only call this if explicitly asked to."""
    print("Escalating to human agent...")
    print("\n=== Escalation Report ===")
    print(f"Summary: {summary}")
    print("=========================\n")
    exit()

#

def execute_order(product, price: int):
    """Price should be in USD."""
    print("\n\n=== Order Summary ===")
    print(f"Product: {product}")
    print(f"Price: ${price}")
    print("=================\n")
    confirm = input("Confirm order? y/n: ").strip().lower()
    if confirm == "y":
        print("Order execution successful!")
        return "Success"
    else:
        print(color("Order cancelled!", "red"))
        return "User cancelled order."
    
def look_up_item(search_query):
    """Use to find item ID.
    Search query can be a description or keywords."""
    item_id = "item_132612938"
    print("Found item:", item_id)
    return item_id

def execute_refund(item_id, reason="not provided"):
    print("\n\n=== Refund Summary ===")
    print(f"Item ID: {item_id}")
    print(f"Reason: {reason}")
    print("=================\n")
    print("Refund execution successful!")
    return "Success"

# Agents

MODEL = "gpt-4o-mini"

def create_triage_agent(client):
    return client.beta.assistants.create(
        name="Triage Agent",
        instructions=(
            "You are a customer service bot for ACME Inc. "
            "Introduce yourself. Always be very brief. "
            "Gather information to direct the customer to the right department. "
            "But make your questions subtle and natural."
        ),
        model=MODEL,
        tools=[{"type": "function", "function": function_to_schema(transfer_to_sales_agent)},
               {"type": "function", "function": function_to_schema(transfer_to_issues_repairs_agent)},
               {"type": "function", "function": function_to_schema(escalate_to_human)}],
    )

def create_sales_agent(client):
    return client.beta.assistants.create(
        name="Sales Agent",
        instructions=(
            "You are a sales agent for ACME Inc."
            "Always answer in a sentence or less."
            "Follow the following routine with the user:"
            "1. Ask them about any problems in their life related to catching roadrunners.\n"
            "2. Casually mention one of ACME's crazy made-up products can help.\n"
            " - Don't mention price.\n"
            "3. Once the user is bought in, drop a ridiculous price.\n"
            "4. Only after everything, and if the user says yes, "
            "tell them a crazy caveat and execute their order.\n"
            ""
        ),
        model=MODEL,
        tools=[{"type": "function", "function": function_to_schema(execute_order)},
               {"type": "function", "function": function_to_schema(transfer_to_triage_agent)}],
    )
    
def create_issues_repairs_agent(client):
    return client.beta.assistants.create(
        name="Issues and Repairs Agent",
        instructions=(
            "You are a customer support agent for ACME Inc."
            "Always answer in a sentence or less."
            "Follow the following routine with the user:"
            "1. First, ask probing questions and understand the user's problem deeper.\n"
            " - unless the user has already provided a reason.\n"
            "2. Propose a fix (make one up).\n"
            "3. ONLY if not satesfied, offer a refund.\n"
            "4. If accepted, search for the ID and then execute refund."
            ""
        ),
        model=MODEL,
        tools=[{"type": "function", "function": function_to_schema(look_up_item)},
               {"type": "function", "function": function_to_schema(execute_refund)},
               {"type": "function", "function": function_to_schema(transfer_to_triage_agent)}],
    )

#

def create_thread(client):
    thread = client.beta.threads.create()
    #show_json("thread", thread)
    
    return thread

def create_message(client, thread, msg):
    message = client.beta.threads.messages.create(
        role="user",
        thread_id=thread.id,
        content=msg,
    )
    #show_json("message", message)
    
    return message

def create_run(client, assistant, thread):
    run = client.beta.threads.runs.create(
        assistant_id=assistant.id,
        thread_id=thread.id,
    )
    #show_json("run", run)
    
    return run

def wait_on_run(client, thread, run):
    while run.status == "queued" or run.status == "in_progress":
        run = client.beta.threads.runs.retrieve(
            thread_id=thread.id,
            run_id=run.id,
        )
        time.sleep(0.25)
    #show_json("run", run)
    
    return run

def execute_tool_call(tool_call):
    name = tool_call.function.name
    args = json.loads(tool_call.function.arguments)

    print(f"{name}, {args}")
        
    #return tools[name](**args)

def list_run_steps(client, thread, run):
    run_steps = client.beta.threads.runs.steps.list(
        thread_id=thread.id,
        run_id=run.id,
        order="asc",
    )

    for step in run_steps.data:
        step_details = step.step_details
        show_json("step_details", step_details)

        if not hasattr(step_details, "tool_calls"):
            break

        print("XXXXX")
        print(get_current_agent().tools)
        print("XXXXX")
        #print(tools)
        #print("XXXXX")

        ###
        for tool in get_current_agent().tools:
            print("===")
            print(tool)
            print("===")
            print(tool.function)
            print("===")
        ###

        #tools = {tool.__name__: tool for tool in get_current_agent().tools}

        for tool_call in step_details.tool_calls:
            result = execute_tool_call(tool_call)
    
    return run_steps
    
def list_messages(client, thread):
    messages = client.beta.threads.messages.list(
        thread_id=thread.id
    )
    #show_json("messages", messages)
    
    return messages

def extract_content_values(data):
    content_values = []
    
    for item in data.data:
        for content in item.content:
            if content.type == 'text':
                content_values.append(content.text.value)
    
    return content_values

#

current_agent, current_thread = None, None

def set_current_agent(agent):
    global current_agent
    current_agent = agent

def set_current_thread(thread):
    global current_thread
    current_thread = thread

def get_current_agent():
    global current_agent
    return current_agent

def get_current_thread():
    global current_thread
    return current_thread

#

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

triage_agent = create_triage_agent(client)
sales_agent = create_sales_agent(client)
issues_repairs_agent = create_issues_repairs_agent(client)

set_current_agent(triage_agent)

triage_thread = create_thread(client)
sales_thread = create_thread(client)
issues_repairs_thread = create_thread(client)

set_current_thread(triage_thread)

def chat(message, history, openai_api_key):
    global client

    assistant = get_current_agent()
    #show_json("Current Agent", assistant)
    
    thread = get_current_thread()
    #show_json("Current Thread", thread)

    create_message(client, thread, message)

    # async
    run = create_run(client, assistant, thread)
    run = wait_on_run(client, thread, run)

    list_run_steps(client, thread, run)
    
    messages = list_messages(client, thread)
    
    return extract_content_values(messages)[0]

gr.ChatInterface(
    chat,
    chatbot=gr.Chatbot(),
    textbox=gr.Textbox(placeholder="Question", container=False, scale=7),
    title="Multi-Agent Orchestration",
    description="Demo using hand-off pattern: triage agent, sales agent, and issues & repairs agent",
    clear_btn=None,
    retry_btn=None,
    undo_btn=None,
    #examples=[["Generate the first 10 Fibbonaci numbers with code.", "sk-<BringYourOwn>"]],
    #cache_examples=False,
    #additional_inputs=[
    #    gr.Textbox("sk-", label="OpenAI API Key", type = "password"),
    #],
).launch()