File size: 8,167 Bytes
aa0eed8
bf9cd7f
92fb7b8
031211a
8279036
aa0eed8
99c5eee
8279036
 
99c5eee
8279036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c5eee
8279036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c5eee
 
 
 
 
 
 
 
 
 
 
 
 
8279036
 
 
 
99c5eee
8279036
 
 
 
 
 
 
 
 
 
 
 
 
99c5eee
 
 
8279036
99c5eee
 
 
8279036
99c5eee
 
 
 
8279036
99c5eee
8279036
99c5eee
 
 
 
 
 
 
 
 
8279036
99c5eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348cc85
 
 
 
 
 
 
 
 
5295650
29455b5
53ed856
39bf620
53ed856
aaf4e3a
 
 
 
 
 
 
39bf620
aaf4e3a
881c209
 
 
 
 
 
39bf620
881c209
 
53ed856
453ee12
53ed856
 
9ea93d2
453ee12
d06678c
39bf620
453ee12
 
51c03d5
 
 
 
 
 
 
 
8f66d0d
51c03d5
 
cee6a57
 
 
 
39bf620
cee6a57
 
12c2b66
24755bb
38dfd80
 
 
 
24755bb
3017744
d42fd6b
df144ba
7fd13ba
348cc85
 
53ed856
348cc85
 
53ed856
cee6a57
 
 
881c209
53ed856
51c03d5
 
a030fa6
377c496
24755bb
12c2b66
805ff2f
19797f3
 
8186c74
431abc0
c097c3c
39bf620
19797f3
8fae4d3
19797f3
c097c3c
 
d42fd6b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
import openai, os, time

from openai import OpenAI
from utils import function_to_schema, show_json

###
MODEL = "gpt-4o-mini"

current_agent, current_thread = None, None
    
def create_triage_agent(client):
    return client.beta.assistants.create(
        name="Triage Agent",
        instructions=(
            "You are a customer service bot for ACME Inc. "
            "Introduce yourself. Always be very brief. "
            "Gather information to direct the customer to the right department. "
            "But make your questions subtle and natural."
        ),
        model=MODEL,
        tools=[{"type": "function", "function": function_to_schema(transfer_to_sales_agent)},
               {"type": "function", "function": function_to_schema(transfer_to_issues_repairs_agent)},
               {"type": "function", "function": function_to_schema(escalate_to_human)}],
    )

def create_sales_agent(client):
    return client.beta.assistants.create(
        name="Sales Agent",
        instructions=(
            "You are a sales agent for ACME Inc."
            "Always answer in a sentence or less."
            "Follow the following routine with the user:"
            "1. Ask them about any problems in their life related to catching roadrunners.\n"
            "2. Casually mention one of ACME's crazy made-up products can help.\n"
            " - Don't mention price.\n"
            "3. Once the user is bought in, drop a ridiculous price.\n"
            "4. Only after everything, and if the user says yes, "
            "tell them a crazy caveat and execute their order.\n"
            ""
        ),
        model=MODEL,
        tools=[{"type": "function", "function": function_to_schema(execute_order)},
               {"type": "function", "function": function_to_schema(transfer_to_triage_agent)}],
    )
    
def create_issues_repairs_agent(client):
    return client.beta.assistants.create(
        name="Issues and Repairs Agent",
        instructions=(
            "You are a customer support agent for ACME Inc."
            "Always answer in a sentence or less."
            "Follow the following routine with the user:"
            "1. First, ask probing questions and understand the user's problem deeper.\n"
            " - unless the user has already provided a reason.\n"
            "2. Propose a fix (make one up).\n"
            "3. ONLY if not satesfied, offer a refund.\n"
            "4. If accepted, search for the ID and then execute refund."
            ""
        ),
        model=MODEL,
        tools=[{"type": "function", "function": function_to_schema(look_up_item)},
               {"type": "function", "function": function_to_schema(execute_refund)},
               {"type": "function", "function": function_to_schema(transfer_to_triage_agent)}],
    )

def set_current_agent(agent):
    current_agent = agent

def set_current_thread(thread):
    current_thread = thread

def get_current_agent():
    return current_agent

def get_current_thread():
    return current_thread

_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

#_assistant, _thread = None, None

###
triage_agent = create_triage_agent(_client)
sales_agent = create_sales_agent(_client)
issues_repairs_agent = create_issues_repairs_agent(_client)

set_current_agent(triage_agent)

triage_thread = create_thread(_client)
sales_thread = create_thread(_client)
issues_repairs_thread = create_thread(_client)

set_current_thread(triage_thread)

#

def transfer_to_sales_agent():
    """Use for anything sales or buying related."""
    set_current_agent(sales_agent)

def transfer_to_issues_repairs_agent():
    """Use for issues, repairs, or refunds."""
    set_current_agent(issues_repairs_agent)

def transfer_to_triage_agent():
    """Call this if the user brings up a topic outside of your purview,
    including escalating to human."""
    set_current_agent(triage_agent)

#

def escalate_to_human(summary):
    """Only call this if explicitly asked to."""
    print("Escalating to human agent...")
    print("\n=== Escalation Report ===")
    print(f"Summary: {summary}")
    print("=========================\n")
    exit()

#

def execute_order(product, price: int):
    """Price should be in USD."""
    print("\n\n=== Order Summary ===")
    print(f"Product: {product}")
    print(f"Price: ${price}")
    print("=================\n")
    confirm = input("Confirm order? y/n: ").strip().lower()
    if confirm == "y":
        print("Order execution successful!")
        return "Success"
    else:
        print(color("Order cancelled!", "red"))
        return "User cancelled order."

def execute_refund(item_id, reason="not provided"):
    print("\n\n=== Refund Summary ===")
    print(f"Item ID: {item_id}")
    print(f"Reason: {reason}")
    print("=================\n")
    print("Refund execution successful!")
    return "Success"
    
def look_up_item(search_query):
    """Use to find item ID.
    Search query can be a description or keywords."""
    item_id = "item_132612938"
    print("Found item:", item_id)
    return item_id
###

#def create_assistant(client):
#    assistant = client.beta.assistants.create(
#        name="Math Tutor",
#        instructions="You are a personal math tutor. Answer questions briefly, in a sentence or less.",
#        model="gpt-4-1106-preview",
#        tools=[{"type": "code_interpreter"}],
#    )
#    show_json("assistant", assistant)
#    return assistant
    
def create_thread(client):
    thread = client.beta.threads.create()
    #show_json("thread", thread)
    return thread

def create_message(client, thread, msg):
    message = client.beta.threads.messages.create(
        role="user",
        thread_id=thread.id,
        content=msg,
    )
    #show_json("message", message)
    return message

def create_run(client, assistant, thread):
    run = client.beta.threads.runs.create(
        assistant_id=assistant.id,
        thread_id=thread.id,
    )
    #show_json("run", run)
    return run

def wait_on_run(client, thread, run):
    while run.status == "queued" or run.status == "in_progress":
        run = client.beta.threads.runs.retrieve(
            thread_id=thread.id,
            run_id=run.id,
        )
        time.sleep(0.25)
    #show_json("run", run)
    return run

def list_run_steps(client, thread, run):
    run_steps = client.beta.threads.runs.steps.list(
        thread_id=thread.id,
        run_id=run.id,
        order="asc",
    )
    for step in run_steps.data:
        step_details = step.step_details
        show_json("step_details", step_details)
    return run_steps
    
def list_messages(client, thread):
    messages = client.beta.threads.messages.list(
        thread_id=thread.id
    )
    #show_json("messages", messages)
    return messages
    
def extract_content_values(data):
    content_values = []
    for item in data.data:
        for content in item.content:
            if content.type == 'text':
                content_values.append(content.text.value)
    return content_values

def chat(message, history, openai_api_key):
    global _client, _assistant, _thread     
       
    #if _assistant == None:
    #    _assistant = create_assistant(_client)

    #if _thread == None:
    #    _thread = create_thread(_client)
        
    create_message(_client, _thread, message)

    # async
    run = create_run(_client, _assistant, _thread)
    run = wait_on_run(_client, _thread, run)

    list_run_steps(_client, _thread, run)
    
    messages = list_messages(_client, _thread)

    return extract_content_values(messages)[0]
        
gr.ChatInterface(
    chat,
    chatbot=gr.Chatbot(height=300),
    textbox=gr.Textbox(placeholder="Question", container=False, scale=7),
    title="Multi-Agent Orchestration",
    description="Demo using hand-off pattern: triage agent, sales agent, and issues & repairs agent",
    retry_btn=None,
    undo_btn=None,
    clear_btn="Clear",
    #examples=[["Generate the first 10 Fibbonaci numbers with code.", "sk-<BringYourOwn>"]],
    #cache_examples=False,
    additional_inputs=[
        gr.Textbox("sk-", label="OpenAI API Key", type = "password"),
    ],
).launch()