ahassoun's picture
Upload 3018 files
ee6e328
|
raw
history blame
9 kB

๊ณ ์ • ๊ธธ์ด ๋ชจ๋ธ์˜ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ(Perplexity)[[perplexity-of-fixedlength-models]]

[[open-in-colab]]

ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ(Perplexity, PPL)๋Š” ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์ธ ์–ธ์–ด ๋ชจ๋ธ ํ‰๊ฐ€์ง€ํ‘œ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ธฐ ์ „์— ์ด ํ‰๊ฐ€์ง€ํ‘œ๋Š” ๊ณ ์ „์ ์ธ ์–ธ์–ด ๋ชจ๋ธ(์ž๊ธฐํšŒ๊ท€ ๋˜๋Š” ์ธ๊ณผ์  ์–ธ์–ด ๋ชจ๋ธ์ด๋ผ๊ณ ๋„ ํ•จ)์—๋งŒ ์ ์šฉ๋˜๋ฉฐ BERT์™€ ๊ฐ™์€ ๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ์—๋Š” ์ž˜ ์ ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค (BERT๋Š” summary of the models ๋ฌธ์„œ๋ฅผ ์ฐธ๊ณ ํ•˜์„ธ์š”).

ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ๋Š” ์‹œํ€€์Šค์˜ ์Œ์˜ ๋กœ๊ทธ ์šฐ๋„(negative log-likelihood, NLL) ๊ฐ’์˜ ํ‰๊ท ์— ์ง€์ˆ˜(exponentiate)๋ฅผ ์ทจํ•œ ๊ฐ’์œผ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ํ† ํฐํ™”๋œ ์‹œํ€€์Šค X=(x0,x1,โ€ฆ,xt)X = (x_0, x_1, \dots, x_t) ๊ฐ€ ์žˆ์„ ๋•Œ, XX ์˜ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ๋Š” ์•„๋ž˜ ์ˆ˜์‹๊ณผ ๊ฐ™์ด ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

PPL(X)=expโก{โˆ’1tโˆ‘itlogโกpฮธ(xiโˆฃx<i)}\text{PPL}(X) = \exp \left\{ {-\frac{1}{t}\sum_i^t \log p_\theta (x_i|x_{<i}) } \right\} logโกpฮธ(xiโˆฃx<i)\log p_\theta (x_i|x_{<i}) ๋Š” ๋ชจ๋ธ์— i๋ฒˆ์งธ ์ด์ „๊นŒ์ง€ ํ† ํฐ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ i๋ฒˆ์งธ ํ† ํฐ์˜ ๋กœ๊ทธ ์šฐ๋„๊ฐ’์ž…๋‹ˆ๋‹ค.

์ง๊ด€์ ์œผ๋กœ ๋ง๋ญ‰์น˜์—์„œ ์ง€์ •๋œ ํ† ํฐ ์ง‘ํ•ฉ์„ ๊ท ์ผํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ค‘์š”ํ•œ ์ ์€ ํ† ํฐํ™” ๊ณผ์ •์ด ๋ชจ๋ธ์˜ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋ธ์„ ๋น„๊ตํ•  ๋•Œ ํ•ญ์ƒ ์ด๋ฅผ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

์ด๋Š” ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ ์˜ˆ์ธก ๊ฐ„์˜ cross-entropy ๊ฐ’์— ์ง€์ˆ˜๋ฅผ ์ทจํ•œ ๊ฒƒ๊ณผ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ์™€ ๋ฌธ์ž๋‹น ๋น„ํŠธ ์ˆ˜(BPC) ๋ฐ ๋ฐ์ดํ„ฐ ์••์ถ•๊ณผ์˜ ๊ด€๊ณ„์— ๋Œ€ํ•ด ๋” ์ง๊ด€์ ์ธ ์ดํ•ด๋ฅผ ์›ํ•˜์‹ ๋‹ค๋ฉด ๋‹ค์Œ ๊ธ€ fantastic blog post on The Gradient์„ ํ™•์ธํ•˜์„ธ์š”.

๊ณ ์ • ๊ธธ์ด ๋ชจ๋ธ์˜ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ(PPL) ๊ณ„์‚ฐํ•˜๊ธฐ[[calculating-ppl-with-fixedlength-models]]

๋ชจ๋ธ์˜ ์ปจํ…์ŠคํŠธ ํฌ๊ธฐ๊ฐ€ ์ •ํ•ด์ ธ์žˆ์ง€ ์•Š๋‹ค๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์ด ์‹œํ€€์Šค๋ฅผ ์ž๋™ ํšŒ๊ท€์ ์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ  ๊ฐ ๋‹จ๊ณ„์—์„œ ์„ ํ–‰ ํ•˜๋Š” ์ „์ฒด ์‹œํ€€์Šค๋ฅผ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์— ๋„ฃ์–ด ๋ชจ๋ธ์˜ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ๋ฅผ ๊ณ„์‚ฐํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

Full decomposition of a sequence with unlimited context length

๊ทธ๋Ÿฌ๋‚˜ ๋ชจ๋ธ์˜ ๊ทผ์‚ฌ์น˜๋ฅผ ๊ตฌํ•  ๋•Œ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋ชจ๋ธ์ด ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ํ† ํฐ ์ˆ˜์— ์ œํ•œ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฐ€์žฅ ํฐ ๋ฒ„์ „์˜ GPT-2๋Š” ํ† ํฐ์˜ ๊ธธ์ด๊ฐ€ 1024๋กœ ๊ณ ์ •๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ tt ๊ฐ€ 1024๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ์— pฮธ(xtโˆฃx<t)p_\theta(x_t|x_{<t}) ์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

๋Œ€์‹  ์‹œํ€€์Šค๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋ชจ๋ธ์˜ ์ตœ๋Œ€ ์ž…๋ ฅ ํฌ๊ธฐ์™€ ๋™์ผํ•œ ๊ธธ์ด๋Š” ๊ฐ€์ง€๋Š” ๋ถ€๋ถ„ ์‹œํ€€์Šค๋กœ ์ชผ๊ฐญ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๋ชจ๋ธ์˜ ์ตœ๋Œ€ ์ž…๋ ฅ ๊ธธ์ด๊ฐ€ kk ๋ผ๋ฉด, ํ† ํฐ xtx_t ์˜ ์šฐ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•  ๋•Œ ์ด์ „ ํ† ํฐ์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ , kโˆ’1k-1 ํ† ํฐ๊นŒ์ง€ ์‚ฌ์šฉํ•ด ๋Œ€๋žต์ ์ธ ์šฐ๋„ ๊ฐ’์„ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค.

๋ชจ๋ธ์˜ ์‹œํ€€์Šค์— ๋Œ€ํ•œ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ๋ฅผ ๊ณ„์‚ฐํ•  ๋•Œ, ์ˆ˜์›”ํ•˜์ง€๋งŒ ์ฐจ์„ ์ฑ…์€ ์‹œํ€€์Šค๋ฅผ ์ฒญํฌ๋กœ ์ชผ๊ฐœ๊ณ  ๋ถ„ํ•ด๋œ ๊ฐ ๋ถ€๋ถ„์˜ ๋กœ๊ทธ ์šฐ๋„ ๊ฐ’์„ ๋…๋ฆฝ์ ์œผ๋กœ ํ•ฉ์‚ฐํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

Suboptimal PPL not taking advantage of full available context

์ด ๋ฐฉ๋ฒ•์€ ๊ฐ ๋ถ€๋ถ„์˜ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ๋ฅผ ํ•œ ๋ฒˆ์˜ ํฌ์›Œ๋“œ ํŒจ์Šค๋กœ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์–ด ๋น ๋ฅด์ง€๋งŒ ์ผ๋ฐ˜์ ์œผ๋กœ ๋” ๋†’์€(๋” ๋‚˜์œ) PPL์„ ์‚ฐ์ถœํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด ๋Œ€๋ถ€๋ถ„์˜ ์˜ˆ์ธก ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์˜ ์ปจํ…์ŠคํŠธ๊ฐ€ ์ ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

๋Œ€์‹ , ๊ณ ์ • ๊ธธ์ด ๋ชจ๋ธ์˜ PPL์€ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์ „๋žต์œผ๋กœ ํ‰๊ฐ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ „๋žต์—๋Š” ์ปจํ…์ŠคํŠธ ์œˆ๋„์šฐ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์Šฌ๋ผ์ด๋”ฉํ•ด ๋ชจ๋ธ์ด ๊ฐ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•  ๋•Œ ๋” ๋งŽ์€ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ฐ–๋„๋ก ํ•˜๋Š” ์ž‘์—…์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.

Sliding window PPL taking advantage of all available context

์ด๋Š” ์‹œํ€€์Šค ํ™•๋ฅ ์˜ ์‹ค์ œ ๋ถ„ํ•ด์— ๋” ๊ฐ€๊นŒ์šด ๊ทผ์‚ฌ์น˜์ด๋ฉฐ ์ผ๋ฐ˜์ ์œผ๋กœ ๋” ์œ ๋ฆฌํ•œ ์ ์ˆ˜๋ฅผ ์‚ฐ์ถœํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ ์€ ๋ง๋ญ‰์น˜์˜ ๊ฐ ํ† ํฐ์— ๋Œ€ํ•ด ๋ณ„๋„์˜ ํฌ์›Œ๋“œ ํŒจ์Šค๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํ˜„์‹ค์ ์œผ๋กœ ์ข‹์€ ์ ˆ์ถฉ์•ˆ์€ ํ•œ ๋ฒˆ์— ํ•œ ํ† ํฐ์”ฉ ์Šฌ๋ผ์ด๋”ฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๋” ํฐ ๊ฐ„๊ฒฉ์œผ๋กœ ์ปจํ…์ŠคํŠธ๋ฅผ ์ด๋™ํ•˜๋Š” ์ŠคํŠธ๋ผ์ด๋“œ๊ฐ€ ์ ์šฉ๋œ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๊ณ„์‚ฐ์„ ํ›จ์”ฌ ๋” ๋น ๋ฅด๊ฒŒ ์ง„ํ–‰ํ•˜๋ฉด์„œ๋„ ๋ชจ๋ธ์— ๊ฐ ๋‹จ๊ณ„์—์„œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์˜ˆ์ œ: ๐Ÿค— Transformers์—์„œ GPT-2๋กœ ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ(perplexity) ๊ณ„์‚ฐํ•˜๊ธฐ[[example-calculating-perplexity-with-gpt2-in-transformers]]

์ด์ œ GPT-2๋กœ ์œ„์˜ ๊ณผ์ •์„ ์‹œ์—ฐํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

from transformers import GPT2LMHeadModel, GPT2TokenizerFast

device = "cuda"
model_id = "gpt2-large"
model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)

WikiText-2 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ฐ€์ ธ์˜ค๊ณ  ๋ช‡ ๊ฐ€์ง€ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์ „๋žต์„ ์‚ฌ์šฉํ•ด ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ๋ฅผ ๊ณ„์‚ฐํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ  ํฌ์›Œ๋“œ ํŒจ์Šค ํ•œ ๋ฒˆ๋งŒ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ „์ฒด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ๊ฐ€์ ธ์˜ค๊ณ  ์ธ์ฝ”๋”ฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

from datasets import load_dataset

test = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
encodings = tokenizer("\n\n".join(test["text"]), return_tensors="pt")

๐Ÿค— Transformers๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ชจ๋ธ์˜ labels๋กœ input_ids๋ฅผ ์ „๋‹ฌํ•ด ๊ฐ ํ† ํฐ์— ๋Œ€ํ•œ ํ‰๊ท  ์Œ์˜ ์šฐ๋„ ๊ฐ’์„ ์†์‹ค๋กœ ๋ฐ˜ํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ๊ฐ ๋ฐ˜๋ณต๋งˆ๋‹ค ๋ชจ๋ธ์— ์ „๋‹ฌํ•˜๋Š” ํ† ํฐ์ด ๊ฒน์นฉ๋‹ˆ๋‹ค. ์ปจํ…์ŠคํŠธ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ํ† ํฐ์— ๋Œ€ํ•œ ๋กœ๊ทธ ์šฐ๋„ ๊ฐ’์ด ์†์‹ค์— ํฌํ•จ๋˜๋Š” ๊ฒƒ์„ ์›ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ํ† ํฐ์˜ input_ids๋ฅผ -100์œผ๋กœ ์„ค์ •ํ•˜์—ฌ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋‹ค์Œ์€ ์ŠคํŠธ๋ผ์ด๋“œ(stride)๋ฅผ 512๋กœ ์‚ฌ์šฉํ•œ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ์ฆ‰, ๋ชจ๋ธ์ด ํ•œ ํ† ํฐ์˜ ์กฐ๊ฑด๋ถ€ ์šฐ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•  ๋•Œ ์ปจํ…์ŠคํŠธ์— ์ตœ์†Œํ•œ 512๊ฐœ์˜ ํ† ํฐ์ด ํฌํ•จ๋˜์–ด์žˆ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค (ํ•ด๋‹น ํ† ํฐ ์•ž์— 512๊ฐœ์˜ ํ† ํฐ์ด ์žˆ๋Š” ๊ฒฝ์šฐ).

import torch
from tqdm import tqdm

max_length = model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)

nlls = []
prev_end_loc = 0
for begin_loc in tqdm(range(0, seq_len, stride)):
    end_loc = min(begin_loc + max_length, seq_len)
    trg_len = end_loc - prev_end_loc  # ๋งˆ์ง€๋ง‰ ๋ฃจํ”„์˜ ์ŠคํŠธ๋ผ์ด๋“œ ๊ฐ’๊ณผ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Œ
    input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
    target_ids = input_ids.clone()
    target_ids[:, :-trg_len] = -100

    with torch.no_grad():
        outputs = model(input_ids, labels=target_ids)

        # ์†์‹ค์€ ๋ชจ๋“  ์œ ํšจํ•œ ๋ ˆ์ด๋ธ”์— ๋Œ€ํ•œ ํ‰๊ท ๊ฐ’์„ ๊ตฌํ•˜๋Š” ๊ต์ฐจ ์—”ํŠธ๋กœํ”ผ(cross entropy)๋กœ ๊ณ„์‚ฐ๋ฉ๋‹ˆ๋‹ค.
        # ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ง€์•ˆ ๋ชจ๋ธ์€ ๋‚ด๋ถ€์ ์œผ๋กœ ๋ ˆ์ด๋ธ”์„ ์™ผ์ชฝ์œผ๋กœ 1๊ฐœ์”ฉ ๋ฐ€๊ธฐ ๋•Œ๋ฌธ์—, (ํƒ€์ผ“ - 1)๊ฐœ ๋งŒํผ์˜ ๋ ˆ์ด๋ธ”์— ๋Œ€ํ•ด ์†์‹ค์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.
        neg_log_likelihood = outputs.loss

    nlls.append(neg_log_likelihood)

    prev_end_loc = end_loc
    if end_loc == seq_len:
        break

ppl = torch.exp(torch.stack(nlls).mean())

์ŠคํŠธ๋ผ์ด๋“œ๋ฅผ ์ตœ๋Œ€ ์ž…๋ ฅ ๊ธธ์ด์™€ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•˜๋ฉด ์œ„์—์„œ ์„ค๋ช…ํ•œ ์ฐจ์„ ์ฑ…์ธ ๋น„์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์ „๋žต๊ณผ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ŠคํŠธ๋ผ์ด๋“œ๊ฐ€ ์ž‘์„์ˆ˜๋ก ๋ชจ๋ธ์ด ๊ฐ ์˜ˆ์ธก์„ ํ•  ๋•Œ ๋” ๋งŽ์€ ์ปจํ…์ŠคํŠธ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์–ด ํŽ„ํ”Œ๋ ‰์„œํ‹ฐ ๊ฐ’์ด ์ข‹์•„์ง‘๋‹ˆ๋‹ค.

์œ„์˜ ๊ณ„์‚ฐ์„ ํ† ํฐ์ด ๊ฒน์น˜์ง€ ์•Š๋„๋ก stride = 1024๋กœ ์„ค์ •ํ•˜๋ฉด PPL์€ 19.44๋กœ GPT-2 ๋…ผ๋ฌธ์—์„œ ๋ณด๊ณ ๋œ 19.93๊ณผ ๊ฑฐ์˜ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. stride = 512๋กœ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์ „๋žต์„ ์‚ฌ์šฉํ•˜๋ฉด PPL์€ 16.45๋กœ ๋–จ์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋Š” ๋” ์ข‹์€ ์ ์ˆ˜์ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹œํ€€์Šค ํ™•๋ฅ ์˜ ์‹ค์ œ ์ž๋™ ํšŒ๊ท€ ๋ถ„ํ•ด์— ๋” ๊ฐ€๊นŒ์šด ๋ฐฉ์‹์œผ๋กœ ๊ณ„์‚ฐ๋ฉ๋‹ˆ๋‹ค.