Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import math | |
from tqdm import tqdm | |
class NoiseScheduleVP: | |
def __init__( | |
self, | |
schedule='discrete', | |
betas=None, | |
alphas_cumprod=None, | |
continuous_beta_0=0.1, | |
continuous_beta_1=20., | |
dtype=torch.float32, | |
): | |
"""Thanks to DPM-Solver for their code base""" | |
"""Create a wrapper class for the forward SDE (VP type). | |
*** | |
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. | |
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. | |
*** | |
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). | |
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). | |
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: | |
log_alpha_t = self.marginal_log_mean_coeff(t) | |
sigma_t = self.marginal_std(t) | |
lambda_t = self.marginal_lambda(t) | |
Moreover, as lambda(t) is an invertible function, we also support its inverse function: | |
t = self.inverse_lambda(lambda_t) | |
=============================================================== | |
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). | |
1. For discrete-time DPMs: | |
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: | |
t_i = (i + 1) / N | |
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. | |
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. | |
Args: | |
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) | |
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) | |
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. | |
**Important**: Please pay special attention for the args for `alphas_cumprod`: | |
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that | |
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). | |
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have | |
alpha_{t_n} = \sqrt{\hat{alpha_n}}, | |
and | |
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). | |
2. For continuous-time DPMs: | |
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise | |
schedule are the default settings in DDPM and improved-DDPM: | |
Args: | |
beta_min: A `float` number. The smallest beta for the linear schedule. | |
beta_max: A `float` number. The largest beta for the linear schedule. | |
cosine_s: A `float` number. The hyperparameter in the cosine schedule. | |
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. | |
T: A `float` number. The ending time of the forward process. | |
=============================================================== | |
Args: | |
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, | |
'linear' or 'cosine' for continuous-time DPMs. | |
Returns: | |
A wrapper object of the forward SDE (VP type). | |
=============================================================== | |
Example: | |
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): | |
>>> ns = NoiseScheduleVP('discrete', betas=betas) | |
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): | |
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) | |
# For continuous-time DPMs (VPSDE), linear schedule: | |
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) | |
""" | |
if schedule not in ['discrete', 'linear', 'cosine']: | |
raise ValueError( | |
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( | |
schedule)) | |
self.schedule = schedule | |
if schedule == 'discrete': | |
if betas is not None: | |
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) | |
else: | |
assert alphas_cumprod is not None | |
log_alphas = 0.5 * torch.log(alphas_cumprod) | |
self.total_N = len(log_alphas) | |
self.T = 1. | |
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype) | |
self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype) | |
else: | |
self.total_N = 1000 | |
self.beta_0 = continuous_beta_0 | |
self.beta_1 = continuous_beta_1 | |
self.cosine_s = 0.008 | |
self.cosine_beta_max = 999. | |
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * ( | |
1. + self.cosine_s) / math.pi - self.cosine_s | |
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) | |
self.schedule = schedule | |
if schedule == 'cosine': | |
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. | |
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well. | |
self.T = 0.9946 | |
else: | |
self.T = 1. | |
def marginal_log_mean_coeff(self, t): | |
""" | |
Compute log(alpha_t) of a given continuous-time label t in [0, T]. | |
""" | |
if self.schedule == 'discrete': | |
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), | |
self.log_alpha_array.to(t.device)).reshape((-1)) | |
elif self.schedule == 'linear': | |
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 | |
elif self.schedule == 'cosine': | |
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) | |
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 | |
return log_alpha_t | |
def marginal_alpha(self, t): | |
""" | |
Compute alpha_t of a given continuous-time label t in [0, T]. | |
""" | |
return torch.exp(self.marginal_log_mean_coeff(t)) | |
def marginal_std(self, t): | |
""" | |
Compute sigma_t of a given continuous-time label t in [0, T]. | |
""" | |
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) | |
def marginal_lambda(self, t): | |
""" | |
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. | |
""" | |
log_mean_coeff = self.marginal_log_mean_coeff(t) | |
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) | |
return log_mean_coeff - log_std | |
def inverse_lambda(self, lamb): | |
""" | |
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. | |
""" | |
if self.schedule == 'linear': | |
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) | |
Delta = self.beta_0 ** 2 + tmp | |
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) | |
elif self.schedule == 'discrete': | |
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) | |
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), | |
torch.flip(self.t_array.to(lamb.device), [1])) | |
return t.reshape((-1,)) | |
else: | |
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) | |
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * ( | |
1. + self.cosine_s) / math.pi - self.cosine_s | |
t = t_fn(log_alpha) | |
return t | |
def edm_sigma(self, t): | |
return self.marginal_std(t) / self.marginal_alpha(t) | |
def edm_inverse_sigma(self, edmsigma): | |
alpha = 1 / (edmsigma ** 2 + 1).sqrt() | |
sigma = alpha * edmsigma | |
lambda_t = torch.log(alpha / sigma) | |
t = self.inverse_lambda(lambda_t) | |
return t | |
def model_wrapper( | |
model, | |
noise_schedule, | |
model_type="noise", | |
model_kwargs={}, | |
guidance_type="uncond", | |
condition=None, | |
unconditional_condition=None, | |
guidance_scale=1., | |
classifier_fn=None, | |
classifier_kwargs={}, | |
): | |
"""Thanks to DPM-Solver for their code base""" | |
"""Create a wrapper function for the noise prediction model. | |
SA-Solver needs to solve the continuous-time diffusion SDEs. For DPMs trained on discrete-time labels, we need to | |
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. | |
We support four types of the diffusion model by setting `model_type`: | |
1. "noise": noise prediction model. (Trained by predicting noise). | |
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). | |
3. "v": velocity prediction model. (Trained by predicting the velocity). | |
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. | |
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." | |
arXiv preprint arXiv:2202.00512 (2022). | |
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." | |
arXiv preprint arXiv:2210.02303 (2022). | |
4. "score": marginal score function. (Trained by denoising score matching). | |
Note that the score function and the noise prediction model follows a simple relationship: | |
``` | |
noise(x_t, t) = -sigma_t * score(x_t, t) | |
``` | |
We support three types of guided sampling by DPMs by setting `guidance_type`: | |
1. "uncond": unconditional sampling by DPMs. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, **model_kwargs) -> noise | x_start | v | score | |
`` | |
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, **model_kwargs) -> noise | x_start | v | score | |
`` | |
The input `classifier_fn` has the following format: | |
`` | |
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) | |
`` | |
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," | |
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. | |
3. "classifier-free": classifier-free guidance sampling by conditional DPMs. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score | |
`` | |
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. | |
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." | |
arXiv preprint arXiv:2207.12598 (2022). | |
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) | |
or continuous-time labels (i.e. epsilon to T). | |
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: | |
`` | |
def model_fn(x, t_continuous) -> noise: | |
t_input = get_model_input_time(t_continuous) | |
return noise_pred(model, x, t_input, **model_kwargs) | |
`` | |
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for SA-Solver. | |
=============================================================== | |
Args: | |
model: A diffusion model with the corresponding format described above. | |
noise_schedule: A noise schedule object, such as NoiseScheduleVP. | |
model_type: A `str`. The parameterization type of the diffusion model. | |
"noise" or "x_start" or "v" or "score". | |
model_kwargs: A `dict`. A dict for the other inputs of the model function. | |
guidance_type: A `str`. The type of the guidance for sampling. | |
"uncond" or "classifier" or "classifier-free". | |
condition: A pytorch tensor. The condition for the guided sampling. | |
Only used for "classifier" or "classifier-free" guidance type. | |
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. | |
Only used for "classifier-free" guidance type. | |
guidance_scale: A `float`. The scale for the guided sampling. | |
classifier_fn: A classifier function. Only used for the classifier guidance. | |
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. | |
Returns: | |
A noise prediction model that accepts the noised data and the continuous time as the inputs. | |
""" | |
def get_model_input_time(t_continuous): | |
""" | |
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. | |
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. | |
For continuous-time DPMs, we just use `t_continuous`. | |
""" | |
if noise_schedule.schedule == 'discrete': | |
return (t_continuous - 1. / noise_schedule.total_N) * 1000. | |
else: | |
return t_continuous | |
def noise_pred_fn(x, t_continuous, cond=None): | |
t_input = get_model_input_time(t_continuous) | |
if cond is None: | |
output = model(x, t_input, **model_kwargs) | |
else: | |
output = model(x, t_input, cond, **model_kwargs) | |
if model_type == "noise": | |
return output | |
elif model_type == "x_start": | |
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) | |
return (x - alpha_t[0] * output) / sigma_t[0] | |
elif model_type == "v": | |
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) | |
return alpha_t[0] * output + sigma_t[0] * x | |
elif model_type == "score": | |
sigma_t = noise_schedule.marginal_std(t_continuous) | |
return -sigma_t[0] * output | |
def cond_grad_fn(x, t_input): | |
""" | |
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). | |
""" | |
with torch.enable_grad(): | |
x_in = x.detach().requires_grad_(True) | |
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) | |
return torch.autograd.grad(log_prob.sum(), x_in)[0] | |
def model_fn(x, t_continuous): | |
""" | |
The noise predicition model function that is used for DPM-Solver. | |
""" | |
if guidance_type == "uncond": | |
return noise_pred_fn(x, t_continuous) | |
elif guidance_type == "classifier": | |
assert classifier_fn is not None | |
t_input = get_model_input_time(t_continuous) | |
cond_grad = cond_grad_fn(x, t_input) | |
sigma_t = noise_schedule.marginal_std(t_continuous) | |
noise = noise_pred_fn(x, t_continuous) | |
return noise - guidance_scale * sigma_t * cond_grad | |
elif guidance_type == "classifier-free": | |
if guidance_scale == 1. or unconditional_condition is None: | |
return noise_pred_fn(x, t_continuous, cond=condition) | |
else: | |
x_in = torch.cat([x] * 2) | |
t_in = torch.cat([t_continuous] * 2) | |
c_in = torch.cat([unconditional_condition, condition]) | |
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) | |
return noise_uncond + guidance_scale * (noise - noise_uncond) | |
assert model_type in ["noise", "x_start", "v", "score"] | |
assert guidance_type in ["uncond", "classifier", "classifier-free"] | |
return model_fn | |
class SASolver: | |
def __init__( | |
self, | |
model_fn, | |
noise_schedule, | |
algorithm_type="data_prediction", | |
correcting_x0_fn=None, | |
correcting_xt_fn=None, | |
thresholding_max_val=1., | |
dynamic_thresholding_ratio=0.995 | |
): | |
""" | |
Construct a SA-Solver | |
The default value for algorithm_type is "data_prediction" and we recommend not to change it to | |
"noise_prediction". For details, please see Appendix A.2.4 in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
""" | |
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0]))) | |
self.noise_schedule = noise_schedule | |
assert algorithm_type in ["data_prediction", "noise_prediction"] | |
if correcting_x0_fn == "dynamic_thresholding": | |
self.correcting_x0_fn = self.dynamic_thresholding_fn | |
else: | |
self.correcting_x0_fn = correcting_x0_fn | |
self.correcting_xt_fn = correcting_xt_fn | |
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio | |
self.thresholding_max_val = thresholding_max_val | |
self.predict_x0 = algorithm_type == "data_prediction" | |
self.sigma_min = float(self.noise_schedule.edm_sigma(torch.tensor([1e-3]))) | |
self.sigma_max = float(self.noise_schedule.edm_sigma(torch.tensor([1]))) | |
def dynamic_thresholding_fn(self, x0, t=None): | |
""" | |
The dynamic thresholding method. | |
""" | |
dims = x0.dim() | |
p = self.dynamic_thresholding_ratio | |
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) | |
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) | |
x0 = torch.clamp(x0, -s, s) / s | |
return x0 | |
def noise_prediction_fn(self, x, t): | |
""" | |
Return the noise prediction model. | |
""" | |
return self.model(x, t) | |
def data_prediction_fn(self, x, t): | |
""" | |
Return the data prediction model (with corrector). | |
""" | |
noise = self.noise_prediction_fn(x, t) | |
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) | |
x0 = (x - sigma_t * noise) / alpha_t | |
if self.correcting_x0_fn is not None: | |
x0 = self.correcting_x0_fn(x0) | |
return x0 | |
def model_fn(self, x, t): | |
""" | |
Convert the model to the noise prediction model or the data prediction model. | |
""" | |
if self.predict_x0: | |
return self.data_prediction_fn(x, t) | |
else: | |
return self.noise_prediction_fn(x, t) | |
def get_time_steps(self, skip_type, t_T, t_0, N, order, device): | |
"""Compute the intermediate time steps for sampling. | |
""" | |
if skip_type == 'logSNR': | |
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) | |
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) | |
logSNR_steps = lambda_T + torch.linspace(torch.tensor(0.).cpu().item(), | |
(lambda_0 - lambda_T).cpu().item() ** (1. / order), N + 1).pow( | |
order).to(device) | |
return self.noise_schedule.inverse_lambda(logSNR_steps) | |
elif skip_type == 'time': | |
t = torch.linspace(t_T ** (1. / order), t_0 ** (1. / order), N + 1).pow(order).to(device) | |
return t | |
elif skip_type == 'karras': | |
sigma_min = max(0.002, self.sigma_min) | |
sigma_max = min(80, self.sigma_max) | |
sigma_steps = torch.linspace(sigma_max ** (1. / 7), sigma_min ** (1. / 7), N + 1).pow(7).to(device) | |
t = self.noise_schedule.edm_inverse_sigma(sigma_steps) | |
return t | |
else: | |
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time' or 'karras'".format(skip_type)) | |
def denoise_to_zero_fn(self, x, s): | |
""" | |
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. | |
""" | |
return self.data_prediction_fn(x, s) | |
def get_coefficients_exponential_negative(self, order, interval_start, interval_end): | |
""" | |
Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end | |
For calculating the coefficient of gradient terms after the lagrange interpolation, | |
see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
For noise_prediction formula. | |
""" | |
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" | |
if order == 0: | |
return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1) | |
elif order == 1: | |
return torch.exp(-interval_end) * ( | |
(interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)) | |
elif order == 2: | |
return torch.exp(-interval_end) * ( | |
(interval_start ** 2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - ( | |
interval_end ** 2 + 2 * interval_end + 2)) | |
elif order == 3: | |
return torch.exp(-interval_end) * ( | |
(interval_start ** 3 + 3 * interval_start ** 2 + 6 * interval_start + 6) * torch.exp( | |
interval_end - interval_start) - (interval_end ** 3 + 3 * interval_end ** 2 + 6 * interval_end + 6)) | |
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau): | |
""" | |
Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end | |
For calculating the coefficient of gradient terms after the lagrange interpolation, | |
see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
For data_prediction formula. | |
""" | |
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" | |
# after change of variable(cov) | |
interval_end_cov = (1 + tau ** 2) * interval_end | |
interval_start_cov = (1 + tau ** 2) * interval_start | |
if order == 0: | |
return torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / ( | |
(1 + tau ** 2)) | |
elif order == 1: | |
return torch.exp(interval_end_cov) * ((interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp( | |
-(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 2) | |
elif order == 2: | |
return torch.exp(interval_end_cov) * ((interval_end_cov ** 2 - 2 * interval_end_cov + 2) - ( | |
interval_start_cov ** 2 - 2 * interval_start_cov + 2) * torch.exp( | |
-(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 3) | |
elif order == 3: | |
return torch.exp(interval_end_cov) * ( | |
(interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6) - ( | |
interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6) * torch.exp( | |
-(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 4) | |
def lagrange_polynomial_coefficient(self, order, lambda_list): | |
""" | |
Calculate the coefficient of lagrange polynomial | |
For lagrange interpolation | |
""" | |
assert order in [0, 1, 2, 3] | |
assert order == len(lambda_list) - 1 | |
if order == 0: | |
return [[1]] | |
elif order == 1: | |
return [[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])], | |
[1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]] | |
elif order == 2: | |
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) | |
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) | |
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) | |
return [[1 / denominator1, | |
(-lambda_list[1] - lambda_list[2]) / denominator1, | |
lambda_list[1] * lambda_list[2] / denominator1], | |
[1 / denominator2, | |
(-lambda_list[0] - lambda_list[2]) / denominator2, | |
lambda_list[0] * lambda_list[2] / denominator2], | |
[1 / denominator3, | |
(-lambda_list[0] - lambda_list[1]) / denominator3, | |
lambda_list[0] * lambda_list[1] / denominator3] | |
] | |
elif order == 3: | |
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * ( | |
lambda_list[0] - lambda_list[3]) | |
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * ( | |
lambda_list[1] - lambda_list[3]) | |
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * ( | |
lambda_list[2] - lambda_list[3]) | |
denominator4 = (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * ( | |
lambda_list[3] - lambda_list[2]) | |
return [[1 / denominator1, | |
(-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1, | |
(lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[ | |
3]) / denominator1, | |
(-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1], | |
[1 / denominator2, | |
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2, | |
(lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[ | |
3]) / denominator2, | |
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2], | |
[1 / denominator3, | |
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3, | |
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[ | |
3]) / denominator3, | |
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3], | |
[1 / denominator4, | |
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4, | |
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[ | |
2]) / denominator4, | |
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4] | |
] | |
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau): | |
""" | |
Calculate the coefficient of gradients. | |
""" | |
assert order in [1, 2, 3, 4] | |
assert order == len(lambda_list), 'the length of lambda list must be equal to the order' | |
coefficients = [] | |
lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list) | |
for i in range(order): | |
coefficient = 0 | |
for j in range(order): | |
if self.predict_x0: | |
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive( | |
order - 1 - j, interval_start, interval_end, tau) | |
else: | |
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative( | |
order - 1 - j, interval_start, interval_end) | |
coefficients.append(coefficient) | |
assert len(coefficients) == order, 'the length of coefficients does not match the order' | |
return coefficients | |
def adams_bashforth_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t): | |
""" | |
SA-Predictor, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
""" | |
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" | |
# get noise schedule | |
ns = self.noise_schedule | |
alpha_t = ns.marginal_alpha(t) | |
sigma_t = ns.marginal_std(t) | |
lambda_t = ns.marginal_lambda(t) | |
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) | |
sigma_prev = ns.marginal_std(t_prev_list[-1]) | |
gradient_part = torch.zeros_like(x) | |
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) | |
lambda_list = [] | |
for i in range(order): | |
lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)])) | |
gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, | |
lambda_list, tau) | |
for i in range(order): | |
if self.predict_x0: | |
gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ | |
i] * model_prev_list[-(i + 1)] | |
else: | |
gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] | |
if self.predict_x0: | |
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise | |
else: | |
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise | |
if self.predict_x0: | |
x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part | |
else: | |
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part | |
return x_t | |
def adams_moulton_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t): | |
""" | |
SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
""" | |
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" | |
# get noise schedule | |
ns = self.noise_schedule | |
alpha_t = ns.marginal_alpha(t) | |
sigma_t = ns.marginal_std(t) | |
lambda_t = ns.marginal_lambda(t) | |
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) | |
sigma_prev = ns.marginal_std(t_prev_list[-1]) | |
gradient_part = torch.zeros_like(x) | |
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) | |
lambda_list = [] | |
t_list = t_prev_list + [t] | |
for i in range(order): | |
lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)])) | |
gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, | |
lambda_list, tau) | |
for i in range(order): | |
if self.predict_x0: | |
gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ | |
i] * model_prev_list[-(i + 1)] | |
else: | |
gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] | |
if self.predict_x0: | |
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise | |
else: | |
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise | |
if self.predict_x0: | |
x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part | |
else: | |
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part | |
return x_t | |
def adams_bashforth_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t): | |
""" | |
SA-Predictor, with the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
""" | |
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" | |
# get noise schedule | |
ns = self.noise_schedule | |
alpha_t = ns.marginal_alpha(t) | |
sigma_t = ns.marginal_std(t) | |
lambda_t = ns.marginal_lambda(t) | |
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) | |
sigma_prev = ns.marginal_std(t_prev_list[-1]) | |
gradient_part = torch.zeros_like(x) | |
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) | |
lambda_list = [] | |
for i in range(order): | |
lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)])) | |
gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, | |
lambda_list, tau) | |
if self.predict_x0: | |
if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling. | |
# The added term is O(h^3). Empirically we find it will slightly improve the image quality. | |
# ODE case | |
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) | |
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) | |
gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( | |
h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( | |
(1 + tau ** 2) ** 2)) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda( | |
t_prev_list[-2])) | |
gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( | |
h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( | |
(1 + tau ** 2) ** 2)) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda( | |
t_prev_list[-2])) | |
for i in range(order): | |
if self.predict_x0: | |
gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ | |
i] * model_prev_list[-(i + 1)] | |
else: | |
gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] | |
if self.predict_x0: | |
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise | |
else: | |
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise | |
if self.predict_x0: | |
x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part | |
else: | |
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part | |
return x_t | |
def adams_moulton_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t): | |
""" | |
SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
""" | |
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" | |
# get noise schedule | |
ns = self.noise_schedule | |
alpha_t = ns.marginal_alpha(t) | |
sigma_t = ns.marginal_std(t) | |
lambda_t = ns.marginal_lambda(t) | |
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) | |
sigma_prev = ns.marginal_std(t_prev_list[-1]) | |
gradient_part = torch.zeros_like(x) | |
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) | |
lambda_list = [] | |
t_list = t_prev_list + [t] | |
for i in range(order): | |
lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)])) | |
gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, | |
lambda_list, tau) | |
if self.predict_x0: | |
if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling. | |
# The added term is O(h^3). Empirically we find it will slightly improve the image quality. | |
# ODE case | |
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h) | |
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h) | |
gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( | |
h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( | |
(1 + tau ** 2) ** 2 * h)) | |
gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( | |
h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( | |
(1 + tau ** 2) ** 2 * h)) | |
for i in range(order): | |
if self.predict_x0: | |
gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ | |
i] * model_prev_list[-(i + 1)] | |
else: | |
gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] | |
if self.predict_x0: | |
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise | |
else: | |
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise | |
if self.predict_x0: | |
x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part | |
else: | |
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part | |
return x_t | |
def sample_few_steps(self, x, tau, steps=5, t_start=None, t_end=None, skip_type='time', skip_order=1, | |
predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False | |
): | |
""" | |
For the PC-mode, please refer to the wiki page | |
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode | |
'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations | |
We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. | |
""" | |
skip_first_step = False | |
skip_final_step = True | |
lower_order_final = True | |
denoise_to_zero = False | |
assert pc_mode in ['PEC', 'PECE'], 'Predictor-corrector mode only supports PEC and PECE' | |
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end | |
t_T = self.noise_schedule.T if t_start is None else t_start | |
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" | |
device = x.device | |
intermediates = [] | |
with torch.no_grad(): | |
assert steps >= max(predictor_order, corrector_order - 1) | |
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order, | |
device=device) | |
assert timesteps.shape[0] - 1 == steps | |
# Init the initial values. | |
step = 0 | |
t = timesteps[step] | |
noise = torch.randn_like(x) | |
t_prev_list = [t] | |
# do not evaluate if skip_first_step | |
if skip_first_step: | |
if self.predict_x0: | |
alpha_t = self.noise_schedule.marginal_alpha(t) | |
sigma_t = self.noise_schedule.marginal_std(t) | |
model_prev_list = [(1 - sigma_t) / alpha_t * x] | |
else: | |
model_prev_list = [x] | |
else: | |
model_prev_list = [self.model_fn(x, t)] | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
# determine the first several values | |
for step in tqdm(range(1, max(predictor_order, corrector_order - 1))): | |
t = timesteps[step] | |
predictor_order_used = min(predictor_order, step) | |
corrector_order_used = min(corrector_order, step + 1) | |
noise = torch.randn_like(x) | |
# predictor step | |
x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, | |
noise=noise, t=t) | |
# evaluation step | |
model_x = self.model_fn(x_p, t) | |
# update model_list | |
model_prev_list.append(model_x) | |
# corrector step | |
if corrector_order > 0: | |
x = self.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, | |
noise=noise, t=t) | |
else: | |
x = x_p | |
# evaluation step if correction and mode = pece | |
if corrector_order > 0: | |
if pc_mode == 'PECE': | |
model_x = self.model_fn(x, t) | |
del model_prev_list[-1] | |
model_prev_list.append(model_x) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
t_prev_list.append(t) | |
for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)): | |
if lower_order_final: | |
predictor_order_used = min(predictor_order, steps - step + 1) | |
corrector_order_used = min(corrector_order, steps - step + 2) | |
else: | |
predictor_order_used = predictor_order | |
corrector_order_used = corrector_order | |
t = timesteps[step] | |
noise = torch.randn_like(x) | |
# predictor step | |
if skip_final_step and step == steps and not denoise_to_zero: | |
x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=0, | |
model_prev_list=model_prev_list, | |
t_prev_list=t_prev_list, noise=noise, t=t) | |
else: | |
x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, | |
t_prev_list=t_prev_list, noise=noise, t=t) | |
# evaluation step | |
# do not evaluate if skip_final_step and step = steps | |
if not skip_final_step or step < steps: | |
model_x = self.model_fn(x_p, t) | |
# update model_list | |
# do not update if skip_final_step and step = steps | |
if not skip_final_step or step < steps: | |
model_prev_list.append(model_x) | |
# corrector step | |
# do not correct if skip_final_step and step = steps | |
if corrector_order > 0: | |
if not skip_final_step or step < steps: | |
x = self.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, | |
t_prev_list=t_prev_list, noise=noise, t=t) | |
else: | |
x = x_p | |
else: | |
x = x_p | |
# evaluation step if mode = pece and step != steps | |
if corrector_order > 0: | |
if pc_mode == 'PECE' and step < steps: | |
model_x = self.model_fn(x, t) | |
del model_prev_list[-1] | |
model_prev_list.append(model_x) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
t_prev_list.append(t) | |
del model_prev_list[0] | |
if denoise_to_zero: | |
t = torch.ones((1,)).to(device) * t_0 | |
x = self.denoise_to_zero_fn(x, t) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step + 1) | |
if return_intermediate: | |
intermediates.append(x) | |
if return_intermediate: | |
return x, intermediates | |
else: | |
return x | |
def sample_more_steps(self, x, tau, steps=20, t_start=None, t_end=None, skip_type='time', skip_order=1, | |
predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False | |
): | |
""" | |
For the PC-mode, please refer to the wiki page | |
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode | |
'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations | |
We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. | |
""" | |
skip_first_step = False | |
skip_final_step = False | |
lower_order_final = True | |
denoise_to_zero = True | |
assert pc_mode in ['PEC', 'PECE'], 'Predictor-corrector mode only supports PEC and PECE' | |
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end | |
t_T = self.noise_schedule.T if t_start is None else t_start | |
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" | |
device = x.device | |
intermediates = [] | |
with torch.no_grad(): | |
assert steps >= max(predictor_order, corrector_order - 1) | |
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order, | |
device=device) | |
assert timesteps.shape[0] - 1 == steps | |
# Init the initial values. | |
step = 0 | |
t = timesteps[step] | |
noise = torch.randn_like(x) | |
t_prev_list = [t] | |
# do not evaluate if skip_first_step | |
if skip_first_step: | |
if self.predict_x0: | |
alpha_t = self.noise_schedule.marginal_alpha(t) | |
sigma_t = self.noise_schedule.marginal_std(t) | |
model_prev_list = [(1 - sigma_t) / alpha_t * x] | |
else: | |
model_prev_list = [x] | |
else: | |
model_prev_list = [self.model_fn(x, t)] | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
# determine the first several values | |
for step in tqdm(range(1, max(predictor_order, corrector_order - 1))): | |
t = timesteps[step] | |
predictor_order_used = min(predictor_order, step) | |
corrector_order_used = min(corrector_order, step + 1) | |
noise = torch.randn_like(x) | |
# predictor step | |
x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, | |
t=t) | |
# evaluation step | |
model_x = self.model_fn(x_p, t) | |
# update model_list | |
model_prev_list.append(model_x) | |
# corrector step | |
if corrector_order > 0: | |
x = self.adams_moulton_update(order=corrector_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, | |
t=t) | |
else: | |
x = x_p | |
# evaluation step if mode = pece | |
if corrector_order > 0: | |
if pc_mode == 'PECE': | |
model_x = self.model_fn(x, t) | |
del model_prev_list[-1] | |
model_prev_list.append(model_x) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
t_prev_list.append(t) | |
for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)): | |
if lower_order_final: | |
predictor_order_used = min(predictor_order, steps - step + 1) | |
corrector_order_used = min(corrector_order, steps - step + 2) | |
else: | |
predictor_order_used = predictor_order | |
corrector_order_used = corrector_order | |
t = timesteps[step] | |
noise = torch.randn_like(x) | |
# predictor step | |
if skip_final_step and step == steps and not denoise_to_zero: | |
x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=0, | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, | |
noise=noise, t=t) | |
else: | |
x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, | |
noise=noise, t=t) | |
# evaluation step | |
# do not evaluate if skip_final_step and step = steps | |
if not skip_final_step or step < steps: | |
model_x = self.model_fn(x_p, t) | |
# update model_list | |
# do not update if skip_final_step and step = steps | |
if not skip_final_step or step < steps: | |
model_prev_list.append(model_x) | |
# corrector step | |
# do not correct if skip_final_step and step = steps | |
if corrector_order > 0: | |
if not skip_final_step or step < steps: | |
x = self.adams_moulton_update(order=corrector_order_used, x=x, tau=tau(t), | |
model_prev_list=model_prev_list, t_prev_list=t_prev_list, | |
noise=noise, t=t) | |
else: | |
x = x_p | |
else: | |
x = x_p | |
# evaluation step if mode = pece and step != steps | |
if corrector_order > 0: | |
if pc_mode == 'PECE' and step < steps: | |
model_x = self.model_fn(x, t) | |
del model_prev_list[-1] | |
model_prev_list.append(model_x) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
t_prev_list.append(t) | |
del model_prev_list[0] | |
if denoise_to_zero: | |
t = torch.ones((1,)).to(device) * t_0 | |
x = self.denoise_to_zero_fn(x, t) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step + 1) | |
if return_intermediate: | |
intermediates.append(x) | |
if return_intermediate: | |
return x, intermediates | |
else: | |
return x | |
def sample(self, mode, x, tau, steps, t_start=None, t_end=None, skip_type='time', skip_order=1, predictor_order=3, | |
corrector_order=4, pc_mode='PEC', return_intermediate=False | |
): | |
""" | |
For the PC-mode, please refer to the wiki page | |
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode | |
'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations | |
We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. | |
'few_steps' mode is recommended. The differences between 'few_steps' and 'more_steps' are as below: | |
1) 'few_steps' do not correct at final step and do not denoise to zero, while 'more_steps' do these two. | |
Thus the NFEs for 'few_steps' = steps, NFEs for 'more_steps' = steps + 2 | |
For most of the experiments and tasks, we find these two operations do not have much help to sample quality. | |
2) 'few_steps' use a rescaling trick as in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf | |
We find it will slightly improve the sample quality especially in few steps. | |
""" | |
assert mode in ['few_steps', 'more_steps'], "mode must be either 'few_steps' or 'more_steps'" | |
if mode == 'few_steps': | |
return self.sample_few_steps(x=x, tau=tau, steps=steps, t_start=t_start, t_end=t_end, skip_type=skip_type, | |
skip_order=skip_order, predictor_order=predictor_order, | |
corrector_order=corrector_order, pc_mode=pc_mode, | |
return_intermediate=return_intermediate) | |
else: | |
return self.sample_more_steps(x=x, tau=tau, steps=steps, t_start=t_start, t_end=t_end, skip_type=skip_type, | |
skip_order=skip_order, predictor_order=predictor_order, | |
corrector_order=corrector_order, pc_mode=pc_mode, | |
return_intermediate=return_intermediate) | |
############################################################# | |
# other utility functions | |
############################################################# | |
def interpolate_fn(x, xp, yp): | |
""" | |
A piecewise linear function y = f(x), using xp and yp as keypoints. | |
We implement f(x) in a differentiable way (i.e. applicable for autograd). | |
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) | |
Args: | |
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). | |
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. | |
yp: PyTorch tensor with shape [C, K]. | |
Returns: | |
The function values f(x), with shape [N, C]. | |
""" | |
N, K = x.shape[0], xp.shape[1] | |
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) | |
sorted_all_x, x_indices = torch.sort(all_x, dim=2) | |
x_idx = torch.argmin(x_indices, dim=2) | |
cand_start_idx = x_idx - 1 | |
start_idx = torch.where( | |
torch.eq(x_idx, 0), | |
torch.tensor(1, device=x.device), | |
torch.where( | |
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, | |
), | |
) | |
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) | |
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) | |
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) | |
start_idx2 = torch.where( | |
torch.eq(x_idx, 0), | |
torch.tensor(0, device=x.device), | |
torch.where( | |
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, | |
), | |
) | |
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) | |
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) | |
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) | |
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) | |
return cand | |
def expand_dims(v, dims): | |
""" | |
Expand the tensor `v` to the dim `dims`. | |
Args: | |
`v`: a PyTorch tensor with shape [N]. | |
`dim`: a `int`. | |
Returns: | |
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. | |
""" | |
return v[(...,) + (None,) * (dims - 1)] |