File size: 58,748 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
import torch
import torch.nn.functional as F
import math
from tqdm import tqdm


class NoiseScheduleVP:
    def __init__(
            self,
            schedule='discrete',
            betas=None,
            alphas_cumprod=None,
            continuous_beta_0=0.1,
            continuous_beta_1=20.,
            dtype=torch.float32,
    ):
        """Thanks to DPM-Solver for their code base"""
        """Create a wrapper class for the forward SDE (VP type).
        ***
        Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
                We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
        ***
        The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
        We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
        Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
            log_alpha_t = self.marginal_log_mean_coeff(t)
            sigma_t = self.marginal_std(t)
            lambda_t = self.marginal_lambda(t)
        Moreover, as lambda(t) is an invertible function, we also support its inverse function:
            t = self.inverse_lambda(lambda_t)
        ===============================================================
        We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
        1. For discrete-time DPMs:
            For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
                t_i = (i + 1) / N
            e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
            We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
            Args:
                betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
                alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
            Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
            **Important**:  Please pay special attention for the args for `alphas_cumprod`:
                The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
                    q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
                Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
                    alpha_{t_n} = \sqrt{\hat{alpha_n}},
                and
                    log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
        2. For continuous-time DPMs:
            We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
            schedule are the default settings in DDPM and improved-DDPM:
            Args:
                beta_min: A `float` number. The smallest beta for the linear schedule.
                beta_max: A `float` number. The largest beta for the linear schedule.
                cosine_s: A `float` number. The hyperparameter in the cosine schedule.
                cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
                T: A `float` number. The ending time of the forward process.
        ===============================================================
        Args:
            schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
                    'linear' or 'cosine' for continuous-time DPMs.
        Returns:
            A wrapper object of the forward SDE (VP type).

        ===============================================================
        Example:
        # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
        >>> ns = NoiseScheduleVP('discrete', betas=betas)
        # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
        >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
        # For continuous-time DPMs (VPSDE), linear schedule:
        >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
        """

        if schedule not in ['discrete', 'linear', 'cosine']:
            raise ValueError(
                "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
                    schedule))

        self.schedule = schedule
        if schedule == 'discrete':
            if betas is not None:
                log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
            else:
                assert alphas_cumprod is not None
                log_alphas = 0.5 * torch.log(alphas_cumprod)
            self.total_N = len(log_alphas)
            self.T = 1.
            self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
            self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype)
        else:
            self.total_N = 1000
            self.beta_0 = continuous_beta_0
            self.beta_1 = continuous_beta_1
            self.cosine_s = 0.008
            self.cosine_beta_max = 999.
            self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
                        1. + self.cosine_s) / math.pi - self.cosine_s
            self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
            self.schedule = schedule
            if schedule == 'cosine':
                # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
                # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
                self.T = 0.9946
            else:
                self.T = 1.

    def marginal_log_mean_coeff(self, t):
        """
        Compute log(alpha_t) of a given continuous-time label t in [0, T].
        """
        if self.schedule == 'discrete':
            return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
                                  self.log_alpha_array.to(t.device)).reshape((-1))
        elif self.schedule == 'linear':
            return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
        elif self.schedule == 'cosine':
            log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
            log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
            return log_alpha_t

    def marginal_alpha(self, t):
        """
        Compute alpha_t of a given continuous-time label t in [0, T].
        """
        return torch.exp(self.marginal_log_mean_coeff(t))

    def marginal_std(self, t):
        """
        Compute sigma_t of a given continuous-time label t in [0, T].
        """
        return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))

    def marginal_lambda(self, t):
        """
        Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
        """
        log_mean_coeff = self.marginal_log_mean_coeff(t)
        log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
        return log_mean_coeff - log_std

    def inverse_lambda(self, lamb):
        """
        Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
        """
        if self.schedule == 'linear':
            tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
            Delta = self.beta_0 ** 2 + tmp
            return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
        elif self.schedule == 'discrete':
            log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
            t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
                               torch.flip(self.t_array.to(lamb.device), [1]))
            return t.reshape((-1,))
        else:
            log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
            t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
                        1. + self.cosine_s) / math.pi - self.cosine_s
            t = t_fn(log_alpha)
            return t

    def edm_sigma(self, t):
        return self.marginal_std(t) / self.marginal_alpha(t)

    def edm_inverse_sigma(self, edmsigma):
        alpha = 1 / (edmsigma ** 2 + 1).sqrt()
        sigma = alpha * edmsigma
        lambda_t = torch.log(alpha / sigma)
        t = self.inverse_lambda(lambda_t)
        return t


def model_wrapper(
        model,
        noise_schedule,
        model_type="noise",
        model_kwargs={},
        guidance_type="uncond",
        condition=None,
        unconditional_condition=None,
        guidance_scale=1.,
        classifier_fn=None,
        classifier_kwargs={},
):
    """Thanks to DPM-Solver for their code base"""
    """Create a wrapper function for the noise prediction model.
    SA-Solver needs to solve the continuous-time diffusion SDEs. For DPMs trained on discrete-time labels, we need to
    firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
    We support four types of the diffusion model by setting `model_type`:
        1. "noise": noise prediction model. (Trained by predicting noise).
        2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
        3. "v": velocity prediction model. (Trained by predicting the velocity).
            The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
            [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
                arXiv preprint arXiv:2202.00512 (2022).
            [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
                arXiv preprint arXiv:2210.02303 (2022).

        4. "score": marginal score function. (Trained by denoising score matching).
            Note that the score function and the noise prediction model follows a simple relationship:
            ```
                noise(x_t, t) = -sigma_t * score(x_t, t)
            ```
    We support three types of guided sampling by DPMs by setting `guidance_type`:
        1. "uncond": unconditional sampling by DPMs.
            The input `model` has the following format:
            ``
                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
            ``
        2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
            The input `model` has the following format:
            ``
                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
            ``
            The input `classifier_fn` has the following format:
            ``
                classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
            ``
            [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
                in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
        3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
            The input `model` has the following format:
            ``
                model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
            ``
            And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
            [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
                arXiv preprint arXiv:2207.12598 (2022).

    The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
    or continuous-time labels (i.e. epsilon to T).
    We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
    ``
        def model_fn(x, t_continuous) -> noise:
            t_input = get_model_input_time(t_continuous)
            return noise_pred(model, x, t_input, **model_kwargs)
    ``
    where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for SA-Solver.
    ===============================================================
    Args:
        model: A diffusion model with the corresponding format described above.
        noise_schedule: A noise schedule object, such as NoiseScheduleVP.
        model_type: A `str`. The parameterization type of the diffusion model.
                    "noise" or "x_start" or "v" or "score".
        model_kwargs: A `dict`. A dict for the other inputs of the model function.
        guidance_type: A `str`. The type of the guidance for sampling.
                    "uncond" or "classifier" or "classifier-free".
        condition: A pytorch tensor. The condition for the guided sampling.
                    Only used for "classifier" or "classifier-free" guidance type.
        unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
                    Only used for "classifier-free" guidance type.
        guidance_scale: A `float`. The scale for the guided sampling.
        classifier_fn: A classifier function. Only used for the classifier guidance.
        classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
    Returns:
        A noise prediction model that accepts the noised data and the continuous time as the inputs.
    """

    def get_model_input_time(t_continuous):
        """
        Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
        For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
        For continuous-time DPMs, we just use `t_continuous`.
        """
        if noise_schedule.schedule == 'discrete':
            return (t_continuous - 1. / noise_schedule.total_N) * 1000.
        else:
            return t_continuous

    def noise_pred_fn(x, t_continuous, cond=None):
        t_input = get_model_input_time(t_continuous)
        if cond is None:
            output = model(x, t_input, **model_kwargs)
        else:
            output = model(x, t_input, cond, **model_kwargs)
        if model_type == "noise":
            return output
        elif model_type == "x_start":
            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
            return (x - alpha_t[0] * output) / sigma_t[0]
        elif model_type == "v":
            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
            return alpha_t[0] * output + sigma_t[0] * x
        elif model_type == "score":
            sigma_t = noise_schedule.marginal_std(t_continuous)
            return -sigma_t[0] * output

    def cond_grad_fn(x, t_input):
        """
        Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
        """
        with torch.enable_grad():
            x_in = x.detach().requires_grad_(True)
            log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
            return torch.autograd.grad(log_prob.sum(), x_in)[0]

    def model_fn(x, t_continuous):
        """
        The noise predicition model function that is used for DPM-Solver.
        """
        if guidance_type == "uncond":
            return noise_pred_fn(x, t_continuous)
        elif guidance_type == "classifier":
            assert classifier_fn is not None
            t_input = get_model_input_time(t_continuous)
            cond_grad = cond_grad_fn(x, t_input)
            sigma_t = noise_schedule.marginal_std(t_continuous)
            noise = noise_pred_fn(x, t_continuous)
            return noise - guidance_scale * sigma_t * cond_grad
        elif guidance_type == "classifier-free":
            if guidance_scale == 1. or unconditional_condition is None:
                return noise_pred_fn(x, t_continuous, cond=condition)
            else:
                x_in = torch.cat([x] * 2)
                t_in = torch.cat([t_continuous] * 2)
                c_in = torch.cat([unconditional_condition, condition])
                noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
                return noise_uncond + guidance_scale * (noise - noise_uncond)

    assert model_type in ["noise", "x_start", "v", "score"]
    assert guidance_type in ["uncond", "classifier", "classifier-free"]
    return model_fn


class SASolver:
    def __init__(
            self,
            model_fn,
            noise_schedule,
            algorithm_type="data_prediction",
            correcting_x0_fn=None,
            correcting_xt_fn=None,
            thresholding_max_val=1.,
            dynamic_thresholding_ratio=0.995
    ):
        """
        Construct a SA-Solver
        The default value for algorithm_type is "data_prediction" and we recommend not to change it to 
        "noise_prediction". For details, please see Appendix A.2.4 in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        """

        self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
        self.noise_schedule = noise_schedule
        assert algorithm_type in ["data_prediction", "noise_prediction"]

        if correcting_x0_fn == "dynamic_thresholding":
            self.correcting_x0_fn = self.dynamic_thresholding_fn
        else:
            self.correcting_x0_fn = correcting_x0_fn

        self.correcting_xt_fn = correcting_xt_fn
        self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
        self.thresholding_max_val = thresholding_max_val

        self.predict_x0 = algorithm_type == "data_prediction"

        self.sigma_min = float(self.noise_schedule.edm_sigma(torch.tensor([1e-3])))
        self.sigma_max = float(self.noise_schedule.edm_sigma(torch.tensor([1])))

    def dynamic_thresholding_fn(self, x0, t=None):
        """
        The dynamic thresholding method.
        """
        dims = x0.dim()
        p = self.dynamic_thresholding_ratio
        s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
        s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
        x0 = torch.clamp(x0, -s, s) / s
        return x0

    def noise_prediction_fn(self, x, t):
        """
        Return the noise prediction model.
        """
        return self.model(x, t)

    def data_prediction_fn(self, x, t):
        """
        Return the data prediction model (with corrector).
        """
        noise = self.noise_prediction_fn(x, t)
        alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
        x0 = (x - sigma_t * noise) / alpha_t
        if self.correcting_x0_fn is not None:
            x0 = self.correcting_x0_fn(x0)
        return x0

    def model_fn(self, x, t):
        """
        Convert the model to the noise prediction model or the data prediction model.
        """

        if self.predict_x0:
            return self.data_prediction_fn(x, t)
        else:
            return self.noise_prediction_fn(x, t)

    def get_time_steps(self, skip_type, t_T, t_0, N, order, device):
        """Compute the intermediate time steps for sampling.
        """
        if skip_type == 'logSNR':
            lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
            lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
            logSNR_steps = lambda_T + torch.linspace(torch.tensor(0.).cpu().item(),
                                                     (lambda_0 - lambda_T).cpu().item() ** (1. / order), N + 1).pow(
                order).to(device)
            return self.noise_schedule.inverse_lambda(logSNR_steps)
        elif skip_type == 'time':
            t = torch.linspace(t_T ** (1. / order), t_0 ** (1. / order), N + 1).pow(order).to(device)
            return t
        elif skip_type == 'karras':
            sigma_min = max(0.002, self.sigma_min)
            sigma_max = min(80, self.sigma_max)
            sigma_steps = torch.linspace(sigma_max ** (1. / 7), sigma_min ** (1. / 7), N + 1).pow(7).to(device)
            t = self.noise_schedule.edm_inverse_sigma(sigma_steps)
            return t
        else:
            raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time' or 'karras'".format(skip_type))

    def denoise_to_zero_fn(self, x, s):
        """
        Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
        """
        return self.data_prediction_fn(x, s)

    def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
        """
        Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
        For calculating the coefficient of gradient terms after the lagrange interpolation,
        see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        For noise_prediction formula.
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        if order == 0:
            return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
        elif order == 1:
            return torch.exp(-interval_end) * (
                        (interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1))
        elif order == 2:
            return torch.exp(-interval_end) * (
                        (interval_start ** 2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - (
                            interval_end ** 2 + 2 * interval_end + 2))
        elif order == 3:
            return torch.exp(-interval_end) * (
                        (interval_start ** 3 + 3 * interval_start ** 2 + 6 * interval_start + 6) * torch.exp(
                    interval_end - interval_start) - (interval_end ** 3 + 3 * interval_end ** 2 + 6 * interval_end + 6))

    def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
        """
        Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
        For calculating the coefficient of gradient terms after the lagrange interpolation,
        see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        For data_prediction formula.
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        # after change of variable(cov)
        interval_end_cov = (1 + tau ** 2) * interval_end
        interval_start_cov = (1 + tau ** 2) * interval_start

        if order == 0:
            return torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (
            (1 + tau ** 2))
        elif order == 1:
            return torch.exp(interval_end_cov) * ((interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp(
                -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 2)
        elif order == 2:
            return torch.exp(interval_end_cov) * ((interval_end_cov ** 2 - 2 * interval_end_cov + 2) - (
                        interval_start_cov ** 2 - 2 * interval_start_cov + 2) * torch.exp(
                -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 3)
        elif order == 3:
            return torch.exp(interval_end_cov) * (
                        (interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6) - (
                            interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6) * torch.exp(
                    -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 4)

    def lagrange_polynomial_coefficient(self, order, lambda_list):
        """
        Calculate the coefficient of lagrange polynomial
        For lagrange interpolation
        """
        assert order in [0, 1, 2, 3]
        assert order == len(lambda_list) - 1
        if order == 0:
            return [[1]]
        elif order == 1:
            return [[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])],
                    [1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]]
        elif order == 2:
            denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
            denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
            denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
            return [[1 / denominator1,
                     (-lambda_list[1] - lambda_list[2]) / denominator1,
                     lambda_list[1] * lambda_list[2] / denominator1],

                    [1 / denominator2,
                     (-lambda_list[0] - lambda_list[2]) / denominator2,
                     lambda_list[0] * lambda_list[2] / denominator2],

                    [1 / denominator3,
                     (-lambda_list[0] - lambda_list[1]) / denominator3,
                     lambda_list[0] * lambda_list[1] / denominator3]
                    ]
        elif order == 3:
            denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * (
                        lambda_list[0] - lambda_list[3])
            denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * (
                        lambda_list[1] - lambda_list[3])
            denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * (
                        lambda_list[2] - lambda_list[3])
            denominator4 = (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * (
                        lambda_list[3] - lambda_list[2])
            return [[1 / denominator1,
                     (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
                     (lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[
                         3]) / denominator1,
                     (-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1],

                    [1 / denominator2,
                     (-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
                     (lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[
                         3]) / denominator2,
                     (-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2],

                    [1 / denominator3,
                     (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
                     (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[
                         3]) / denominator3,
                     (-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3],

                    [1 / denominator4,
                     (-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
                     (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[
                         2]) / denominator4,
                     (-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4]

                    ]

    def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
        """
        Calculate the coefficient of gradients.
        """
        assert order in [1, 2, 3, 4]
        assert order == len(lambda_list), 'the length of lambda list must be equal to the order'
        coefficients = []
        lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
        for i in range(order):
            coefficient = 0
            for j in range(order):
                if self.predict_x0:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
                        order - 1 - j, interval_start, interval_end, tau)
                else:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
                        order - 1 - j, interval_start, interval_end)
            coefficients.append(coefficient)
        assert len(coefficients) == order, 'the length of coefficients does not match the order'
        return coefficients

    def adams_bashforth_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t):
        """
        SA-Predictor, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        """
        assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4"

        # get noise schedule
        ns = self.noise_schedule
        alpha_t = ns.marginal_alpha(t)
        sigma_t = ns.marginal_std(t)
        lambda_t = ns.marginal_lambda(t)
        alpha_prev = ns.marginal_alpha(t_prev_list[-1])
        sigma_prev = ns.marginal_std(t_prev_list[-1])
        gradient_part = torch.zeros_like(x)
        h = lambda_t - ns.marginal_lambda(t_prev_list[-1])
        lambda_list = []
        for i in range(order):
            lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)]))
        gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t,
                                                         lambda_list, tau)

        for i in range(order):
            if self.predict_x0:
                gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
                    i] * model_prev_list[-(i + 1)]
            else:
                gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part

        return x_t

    def adams_moulton_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t):
        """
        SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        """

        assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4"

        # get noise schedule
        ns = self.noise_schedule
        alpha_t = ns.marginal_alpha(t)
        sigma_t = ns.marginal_std(t)
        lambda_t = ns.marginal_lambda(t)
        alpha_prev = ns.marginal_alpha(t_prev_list[-1])
        sigma_prev = ns.marginal_std(t_prev_list[-1])
        gradient_part = torch.zeros_like(x)
        h = lambda_t - ns.marginal_lambda(t_prev_list[-1])
        lambda_list = []
        t_list = t_prev_list + [t]
        for i in range(order):
            lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)]))
        gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t,
                                                         lambda_list, tau)

        for i in range(order):
            if self.predict_x0:
                gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
                    i] * model_prev_list[-(i + 1)]
            else:
                gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part

        return x_t

    def adams_bashforth_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t):
        """
        SA-Predictor, with the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        """

        assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4"

        # get noise schedule
        ns = self.noise_schedule
        alpha_t = ns.marginal_alpha(t)
        sigma_t = ns.marginal_std(t)
        lambda_t = ns.marginal_lambda(t)
        alpha_prev = ns.marginal_alpha(t_prev_list[-1])
        sigma_prev = ns.marginal_std(t_prev_list[-1])
        gradient_part = torch.zeros_like(x)
        h = lambda_t - ns.marginal_lambda(t_prev_list[-1])
        lambda_list = []
        for i in range(order):
            lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)]))
        gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t,
                                                         lambda_list, tau)

        if self.predict_x0:
            if order == 2:  ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2)) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(
                    t_prev_list[-2]))
                gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2)) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(
                    t_prev_list[-2]))

        for i in range(order):
            if self.predict_x0:
                gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
                    i] * model_prev_list[-(i + 1)]
            else:
                gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part

        return x_t

    def adams_moulton_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t):
        """
        SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        """

        assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4"

        # get noise schedule
        ns = self.noise_schedule
        alpha_t = ns.marginal_alpha(t)
        sigma_t = ns.marginal_std(t)
        lambda_t = ns.marginal_lambda(t)
        alpha_prev = ns.marginal_alpha(t_prev_list[-1])
        sigma_prev = ns.marginal_std(t_prev_list[-1])
        gradient_part = torch.zeros_like(x)
        h = lambda_t - ns.marginal_lambda(t_prev_list[-1])
        lambda_list = []
        t_list = t_prev_list + [t]
        for i in range(order):
            lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)]))
        gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t,
                                                         lambda_list, tau)

        if self.predict_x0:
            if order == 2:  ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2 * h))
                gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2 * h))

        for i in range(order):
            if self.predict_x0:
                gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
                    i] * model_prev_list[-(i + 1)]
            else:
                gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part

        return x_t

    def sample_few_steps(self, x, tau, steps=5, t_start=None, t_end=None, skip_type='time', skip_order=1,
                         predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False
                         ):
        """
        For the PC-mode, please refer to the wiki page 
        https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode
        'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations
        We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs.
        """

        skip_first_step = False
        skip_final_step = True
        lower_order_final = True
        denoise_to_zero = False

        assert pc_mode in ['PEC', 'PECE'], 'Predictor-corrector mode only supports PEC and PECE'
        t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
        t_T = self.noise_schedule.T if t_start is None else t_start
        assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"

        device = x.device
        intermediates = []
        with torch.no_grad():
            assert steps >= max(predictor_order, corrector_order - 1)
            timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order,
                                            device=device)
            assert timesteps.shape[0] - 1 == steps
            # Init the initial values.
            step = 0
            t = timesteps[step]
            noise = torch.randn_like(x)
            t_prev_list = [t]
            # do not evaluate if skip_first_step
            if skip_first_step:
                if self.predict_x0:
                    alpha_t = self.noise_schedule.marginal_alpha(t)
                    sigma_t = self.noise_schedule.marginal_std(t)
                    model_prev_list = [(1 - sigma_t) / alpha_t * x]
                else:
                    model_prev_list = [x]
            else:
                model_prev_list = [self.model_fn(x, t)]

            if self.correcting_xt_fn is not None:
                x = self.correcting_xt_fn(x, t, step)
            if return_intermediate:
                intermediates.append(x)

            # determine the first several values
            for step in tqdm(range(1, max(predictor_order, corrector_order - 1))):

                t = timesteps[step]
                predictor_order_used = min(predictor_order, step)
                corrector_order_used = min(corrector_order, step + 1)
                noise = torch.randn_like(x)
                # predictor step
                x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=tau(t),
                                                            model_prev_list=model_prev_list, t_prev_list=t_prev_list,
                                                            noise=noise, t=t)
                # evaluation step
                model_x = self.model_fn(x_p, t)

                # update model_list
                model_prev_list.append(model_x)
                # corrector step
                if corrector_order > 0:
                    x = self.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau(t),
                                                            model_prev_list=model_prev_list, t_prev_list=t_prev_list,
                                                            noise=noise, t=t)
                else:
                    x = x_p

                # evaluation step if correction and mode = pece
                if corrector_order > 0:
                    if pc_mode == 'PECE':
                        model_x = self.model_fn(x, t)
                        del model_prev_list[-1]
                        model_prev_list.append(model_x)

                if self.correcting_xt_fn is not None:
                    x = self.correcting_xt_fn(x, t, step)
                if return_intermediate:
                    intermediates.append(x)

                t_prev_list.append(t)

            for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)):
                if lower_order_final:
                    predictor_order_used = min(predictor_order, steps - step + 1)
                    corrector_order_used = min(corrector_order, steps - step + 2)

                else:
                    predictor_order_used = predictor_order
                    corrector_order_used = corrector_order
                t = timesteps[step]
                noise = torch.randn_like(x)

                # predictor step
                if skip_final_step and step == steps and not denoise_to_zero:
                    x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=0,
                                                                model_prev_list=model_prev_list,
                                                                t_prev_list=t_prev_list, noise=noise, t=t)
                else:
                    x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=tau(t),
                                                                model_prev_list=model_prev_list,
                                                                t_prev_list=t_prev_list, noise=noise, t=t)

                # evaluation step
                # do not evaluate if skip_final_step and step = steps
                if not skip_final_step or step < steps:
                    model_x = self.model_fn(x_p, t)

                # update model_list
                # do not update if skip_final_step and step = steps
                if not skip_final_step or step < steps:
                    model_prev_list.append(model_x)

                # corrector step
                # do not correct if skip_final_step and step = steps
                if corrector_order > 0:
                    if not skip_final_step or step < steps:
                        x = self.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau(t),
                                                                model_prev_list=model_prev_list,
                                                                t_prev_list=t_prev_list, noise=noise, t=t)
                    else:
                        x = x_p
                else:
                    x = x_p

                # evaluation step if mode = pece and step != steps
                if corrector_order > 0:
                    if pc_mode == 'PECE' and step < steps:
                        model_x = self.model_fn(x, t)
                        del model_prev_list[-1]
                        model_prev_list.append(model_x)

                if self.correcting_xt_fn is not None:
                    x = self.correcting_xt_fn(x, t, step)
                if return_intermediate:
                    intermediates.append(x)

                t_prev_list.append(t)
                del model_prev_list[0]

            if denoise_to_zero:
                t = torch.ones((1,)).to(device) * t_0
                x = self.denoise_to_zero_fn(x, t)
                if self.correcting_xt_fn is not None:
                    x = self.correcting_xt_fn(x, t, step + 1)
                if return_intermediate:
                    intermediates.append(x)
        if return_intermediate:
            return x, intermediates
        else:
            return x

    def sample_more_steps(self, x, tau, steps=20, t_start=None, t_end=None, skip_type='time', skip_order=1,
                          predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False
                          ):
        """
        For the PC-mode, please refer to the wiki page 
        https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode
        'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations
        We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs.
        """

        skip_first_step = False
        skip_final_step = False
        lower_order_final = True
        denoise_to_zero = True

        assert pc_mode in ['PEC', 'PECE'], 'Predictor-corrector mode only supports PEC and PECE'
        t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
        t_T = self.noise_schedule.T if t_start is None else t_start
        assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"

        device = x.device
        intermediates = []
        with torch.no_grad():
            assert steps >= max(predictor_order, corrector_order - 1)
            timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order,
                                            device=device)
            assert timesteps.shape[0] - 1 == steps
            # Init the initial values.
            step = 0
            t = timesteps[step]
            noise = torch.randn_like(x)
            t_prev_list = [t]
            # do not evaluate if skip_first_step
            if skip_first_step:
                if self.predict_x0:
                    alpha_t = self.noise_schedule.marginal_alpha(t)
                    sigma_t = self.noise_schedule.marginal_std(t)
                    model_prev_list = [(1 - sigma_t) / alpha_t * x]
                else:
                    model_prev_list = [x]
            else:
                model_prev_list = [self.model_fn(x, t)]

            if self.correcting_xt_fn is not None:
                x = self.correcting_xt_fn(x, t, step)
            if return_intermediate:
                intermediates.append(x)

            # determine the first several values
            for step in tqdm(range(1, max(predictor_order, corrector_order - 1))):

                t = timesteps[step]
                predictor_order_used = min(predictor_order, step)
                corrector_order_used = min(corrector_order, step + 1)
                noise = torch.randn_like(x)
                # predictor step
                x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=tau(t),
                                                  model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise,
                                                  t=t)
                # evaluation step
                model_x = self.model_fn(x_p, t)

                # update model_list
                model_prev_list.append(model_x)
                # corrector step
                if corrector_order > 0:
                    x = self.adams_moulton_update(order=corrector_order_used, x=x, tau=tau(t),
                                                  model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise,
                                                  t=t)
                else:
                    x = x_p

                # evaluation step if mode = pece
                if corrector_order > 0:
                    if pc_mode == 'PECE':
                        model_x = self.model_fn(x, t)
                        del model_prev_list[-1]
                        model_prev_list.append(model_x)
                if self.correcting_xt_fn is not None:
                    x = self.correcting_xt_fn(x, t, step)
                if return_intermediate:
                    intermediates.append(x)

                t_prev_list.append(t)

            for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)):
                if lower_order_final:
                    predictor_order_used = min(predictor_order, steps - step + 1)
                    corrector_order_used = min(corrector_order, steps - step + 2)

                else:
                    predictor_order_used = predictor_order
                    corrector_order_used = corrector_order
                t = timesteps[step]
                noise = torch.randn_like(x)

                # predictor step
                if skip_final_step and step == steps and not denoise_to_zero:
                    x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=0,
                                                      model_prev_list=model_prev_list, t_prev_list=t_prev_list,
                                                      noise=noise, t=t)
                else:
                    x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=tau(t),
                                                      model_prev_list=model_prev_list, t_prev_list=t_prev_list,
                                                      noise=noise, t=t)

                # evaluation step
                # do not evaluate if skip_final_step and step = steps
                if not skip_final_step or step < steps:
                    model_x = self.model_fn(x_p, t)

                # update model_list
                # do not update if skip_final_step and step = steps
                if not skip_final_step or step < steps:
                    model_prev_list.append(model_x)

                # corrector step
                # do not correct if skip_final_step and step = steps
                if corrector_order > 0:
                    if not skip_final_step or step < steps:
                        x = self.adams_moulton_update(order=corrector_order_used, x=x, tau=tau(t),
                                                      model_prev_list=model_prev_list, t_prev_list=t_prev_list,
                                                      noise=noise, t=t)
                    else:
                        x = x_p
                else:
                    x = x_p

                # evaluation step if mode = pece and step != steps
                if corrector_order > 0:
                    if pc_mode == 'PECE' and step < steps:
                        model_x = self.model_fn(x, t)
                        del model_prev_list[-1]
                        model_prev_list.append(model_x)

                if self.correcting_xt_fn is not None:
                    x = self.correcting_xt_fn(x, t, step)
                if return_intermediate:
                    intermediates.append(x)

                t_prev_list.append(t)
                del model_prev_list[0]

            if denoise_to_zero:
                t = torch.ones((1,)).to(device) * t_0
                x = self.denoise_to_zero_fn(x, t)
                if self.correcting_xt_fn is not None:
                    x = self.correcting_xt_fn(x, t, step + 1)
                if return_intermediate:
                    intermediates.append(x)
        if return_intermediate:
            return x, intermediates
        else:
            return x

    def sample(self, mode, x, tau, steps, t_start=None, t_end=None, skip_type='time', skip_order=1, predictor_order=3,
               corrector_order=4, pc_mode='PEC', return_intermediate=False
               ):
        """
        For the PC-mode, please refer to the wiki page 
        https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode
        'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations
        We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs.

        'few_steps' mode is recommended. The differences between 'few_steps' and 'more_steps' are as below:
        1) 'few_steps' do not correct at final step and do not denoise to zero, while 'more_steps' do these two.
        Thus the NFEs for 'few_steps' = steps, NFEs for 'more_steps' = steps + 2
        For most of the experiments and tasks, we find these two operations do not have much help to sample quality.
        2) 'few_steps' use a rescaling trick as in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf
        We find it will slightly improve the sample quality especially in few steps.
        """
        assert mode in ['few_steps', 'more_steps'], "mode must be either 'few_steps' or 'more_steps'"
        if mode == 'few_steps':
            return self.sample_few_steps(x=x, tau=tau, steps=steps, t_start=t_start, t_end=t_end, skip_type=skip_type,
                                         skip_order=skip_order, predictor_order=predictor_order,
                                         corrector_order=corrector_order, pc_mode=pc_mode,
                                         return_intermediate=return_intermediate)
        else:
            return self.sample_more_steps(x=x, tau=tau, steps=steps, t_start=t_start, t_end=t_end, skip_type=skip_type,
                                          skip_order=skip_order, predictor_order=predictor_order,
                                          corrector_order=corrector_order, pc_mode=pc_mode,
                                          return_intermediate=return_intermediate)


#############################################################
# other utility functions
#############################################################

def interpolate_fn(x, xp, yp):
    """
    A piecewise linear function y = f(x), using xp and yp as keypoints.
    We implement f(x) in a differentiable way (i.e. applicable for autograd).
    The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
    Args:
        x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
        xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
        yp: PyTorch tensor with shape [C, K].
    Returns:
        The function values f(x), with shape [N, C].
    """
    N, K = x.shape[0], xp.shape[1]
    all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
    sorted_all_x, x_indices = torch.sort(all_x, dim=2)
    x_idx = torch.argmin(x_indices, dim=2)
    cand_start_idx = x_idx - 1
    start_idx = torch.where(
        torch.eq(x_idx, 0),
        torch.tensor(1, device=x.device),
        torch.where(
            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
        ),
    )
    end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
    start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
    end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
    start_idx2 = torch.where(
        torch.eq(x_idx, 0),
        torch.tensor(0, device=x.device),
        torch.where(
            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
        ),
    )
    y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
    start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
    end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
    cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
    return cand


def expand_dims(v, dims):
    """
    Expand the tensor `v` to the dim `dims`.
    Args:
        `v`: a PyTorch tensor with shape [N].
        `dim`: a `int`.
    Returns:
        a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
    """
    return v[(...,) + (None,) * (dims - 1)]