Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from models_sr.diffsr_modules import RRDBNet | |
from tasks.srdiff_df2k_sam import Df2kDataSet_sam | |
from tasks.trainer import Trainer | |
from utils_sr.hparams import hparams | |
class RRDBTask_sam(Trainer): | |
def build_model(self): | |
hidden_size = hparams['hidden_size'] | |
self.model = RRDBNet(3, 3, hidden_size, hparams['num_block'], hidden_size // 2) | |
return self.model | |
def build_optimizer(self, model): | |
return torch.optim.Adam(model.parameters(), lr=hparams['lr']) | |
def build_scheduler(self, optimizer): | |
return torch.optim.lr_scheduler.StepLR(optimizer, 200000, 0.5) | |
def training_step(self, sample): | |
img_hr = sample['img_hr'] | |
img_lr = sample['img_lr'] | |
p = self.model(img_lr) | |
loss = F.l1_loss(p, img_hr, reduction='mean') | |
return {'l': loss, 'lr': self.scheduler.get_last_lr()[0]}, loss | |
def sample_and_test(self, sample): | |
ret = {k: 0 for k in self.metric_keys} | |
ret['n_samples'] = 0 | |
img_hr = sample['img_hr'] | |
img_lr = sample['img_lr'] | |
img_sr = self.model(img_lr) | |
img_sr = img_sr.clamp(-1, 1) | |
for b in range(img_sr.shape[0]): | |
s = self.measure.measure(img_sr[b], img_hr[b], img_lr[b], hparams['sr_scale']) | |
ret['psnr'] += s['psnr'] | |
ret['ssim'] += s['ssim'] | |
ret['lpips'] += s['lpips'] | |
ret['lr_psnr'] += s['lr_psnr'] | |
ret['n_samples'] += 1 | |
return img_sr, img_sr, ret | |
class RRDBDf2kTask_sam(RRDBTask_sam): | |
def __init__(self): | |
super().__init__() | |
self.dataset_cls = Df2kDataSet_sam | |