File size: 1,679 Bytes
193c713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn.functional as F

from models_sr.diffsr_modules import RRDBNet
from tasks.srdiff_df2k_sam import Df2kDataSet_sam
from tasks.trainer import Trainer
from utils_sr.hparams import hparams


class RRDBTask_sam(Trainer):
    def build_model(self):
        hidden_size = hparams['hidden_size']
        self.model = RRDBNet(3, 3, hidden_size, hparams['num_block'], hidden_size // 2)
        return self.model
    
    def build_optimizer(self, model):
        return torch.optim.Adam(model.parameters(), lr=hparams['lr'])
    
    def build_scheduler(self, optimizer):
        return torch.optim.lr_scheduler.StepLR(optimizer, 200000, 0.5)
    
    def training_step(self, sample):
        img_hr = sample['img_hr']
        img_lr = sample['img_lr']
        p = self.model(img_lr)
        loss = F.l1_loss(p, img_hr, reduction='mean')
        return {'l': loss, 'lr': self.scheduler.get_last_lr()[0]}, loss
    
    def sample_and_test(self, sample):
        ret = {k: 0 for k in self.metric_keys}
        ret['n_samples'] = 0
        img_hr = sample['img_hr']
        img_lr = sample['img_lr']
        img_sr = self.model(img_lr)
        img_sr = img_sr.clamp(-1, 1)
        for b in range(img_sr.shape[0]):
            s = self.measure.measure(img_sr[b], img_hr[b], img_lr[b], hparams['sr_scale'])
            ret['psnr'] += s['psnr']
            ret['ssim'] += s['ssim']
            ret['lpips'] += s['lpips']
            ret['lr_psnr'] += s['lr_psnr']
            ret['n_samples'] += 1
        return img_sr, img_sr, ret


class RRDBDf2kTask_sam(RRDBTask_sam):
    def __init__(self):
        super().__init__()
        self.dataset_cls = Df2kDataSet_sam