Spaces:
Runtime error
Runtime error
""" MobileNet-V3 | |
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. | |
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .activations import get_act_fn, get_act_layer, HardSwish | |
from .config import layer_config_kwargs | |
from .conv2d_layers import select_conv2d | |
from .helpers import load_pretrained | |
from .efficientnet_builder import * | |
__all__ = ['mobilenetv3_rw', 'mobilenetv3_large_075', 'mobilenetv3_large_100', 'mobilenetv3_large_minimal_100', | |
'mobilenetv3_small_075', 'mobilenetv3_small_100', 'mobilenetv3_small_minimal_100', | |
'tf_mobilenetv3_large_075', 'tf_mobilenetv3_large_100', 'tf_mobilenetv3_large_minimal_100', | |
'tf_mobilenetv3_small_075', 'tf_mobilenetv3_small_100', 'tf_mobilenetv3_small_minimal_100'] | |
model_urls = { | |
'mobilenetv3_rw': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', | |
'mobilenetv3_large_075': None, | |
'mobilenetv3_large_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', | |
'mobilenetv3_large_minimal_100': None, | |
'mobilenetv3_small_075': None, | |
'mobilenetv3_small_100': None, | |
'mobilenetv3_small_minimal_100': None, | |
'tf_mobilenetv3_large_075': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', | |
'tf_mobilenetv3_large_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', | |
'tf_mobilenetv3_large_minimal_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', | |
'tf_mobilenetv3_small_075': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', | |
'tf_mobilenetv3_small_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', | |
'tf_mobilenetv3_small_minimal_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', | |
} | |
class MobileNetV3(nn.Module): | |
""" MobileNet-V3 | |
A this model utilizes the MobileNet-v3 specific 'efficient head', where global pooling is done before the | |
head convolution without a final batch-norm layer before the classifier. | |
Paper: https://arxiv.org/abs/1905.02244 | |
""" | |
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, | |
channel_multiplier=1.0, pad_type='', act_layer=HardSwish, drop_rate=0., drop_connect_rate=0., | |
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'): | |
super(MobileNetV3, self).__init__() | |
self.drop_rate = drop_rate | |
stem_size = round_channels(stem_size, channel_multiplier) | |
self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) | |
self.bn1 = nn.BatchNorm2d(stem_size, **norm_kwargs) | |
self.act1 = act_layer(inplace=True) | |
in_chs = stem_size | |
builder = EfficientNetBuilder( | |
channel_multiplier, pad_type=pad_type, act_layer=act_layer, se_kwargs=se_kwargs, | |
norm_layer=norm_layer, norm_kwargs=norm_kwargs, drop_connect_rate=drop_connect_rate) | |
self.blocks = nn.Sequential(*builder(in_chs, block_args)) | |
in_chs = builder.in_chs | |
self.global_pool = nn.AdaptiveAvgPool2d(1) | |
self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type, bias=head_bias) | |
self.act2 = act_layer(inplace=True) | |
self.classifier = nn.Linear(num_features, num_classes) | |
for m in self.modules(): | |
if weight_init == 'goog': | |
initialize_weight_goog(m) | |
else: | |
initialize_weight_default(m) | |
def as_sequential(self): | |
layers = [self.conv_stem, self.bn1, self.act1] | |
layers.extend(self.blocks) | |
layers.extend([ | |
self.global_pool, self.conv_head, self.act2, | |
nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) | |
return nn.Sequential(*layers) | |
def features(self, x): | |
x = self.conv_stem(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.blocks(x) | |
x = self.global_pool(x) | |
x = self.conv_head(x) | |
x = self.act2(x) | |
return x | |
def forward(self, x): | |
x = self.features(x) | |
x = x.flatten(1) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
return self.classifier(x) | |
def _create_model(model_kwargs, variant, pretrained=False): | |
as_sequential = model_kwargs.pop('as_sequential', False) | |
model = MobileNetV3(**model_kwargs) | |
if pretrained and model_urls[variant]: | |
load_pretrained(model, model_urls[variant]) | |
if as_sequential: | |
model = model.as_sequential() | |
return model | |
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a MobileNet-V3 model (RW variant). | |
Paper: https://arxiv.org/abs/1905.02244 | |
This was my first attempt at reproducing the MobileNet-V3 from paper alone. It came close to the | |
eventual Tensorflow reference impl but has a few differences: | |
1. This model has no bias on the head convolution | |
2. This model forces no residual (noskip) on the first DWS block, this is different than MnasNet | |
3. This model always uses ReLU for the SE activation layer, other models in the family inherit their act layer | |
from their parent block | |
4. This model does not enforce divisible by 8 limitation on the SE reduction channel count | |
Overall the changes are fairly minor and result in a very small parameter count difference and no | |
top-1/5 | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu | |
# stage 1, 112x112 in | |
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu | |
# stage 2, 56x56 in | |
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu | |
# stage 3, 28x28 in | |
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish | |
# stage 5, 14x14in | |
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c960'], # hard-swish | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
head_bias=False, # one of my mistakes | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'hard_swish'), | |
se_kwargs=dict(gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs, | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a MobileNet-V3 large/small/minimal models. | |
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py | |
Paper: https://arxiv.org/abs/1905.02244 | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
if 'small' in variant: | |
num_features = 1024 | |
if 'minimal' in variant: | |
act_layer = 'relu' | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s2_e1_c16'], | |
# stage 1, 56x56 in | |
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], | |
# stage 2, 28x28 in | |
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], | |
# stage 3, 14x14 in | |
['ir_r2_k3_s1_e3_c48'], | |
# stage 4, 14x14in | |
['ir_r3_k3_s2_e6_c96'], | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c576'], | |
] | |
else: | |
act_layer = 'hard_swish' | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu | |
# stage 1, 56x56 in | |
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu | |
# stage 2, 28x28 in | |
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish | |
# stage 3, 14x14 in | |
['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish | |
# stage 4, 14x14in | |
['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c576'], # hard-swish | |
] | |
else: | |
num_features = 1280 | |
if 'minimal' in variant: | |
act_layer = 'relu' | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16'], | |
# stage 1, 112x112 in | |
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], | |
# stage 2, 56x56 in | |
['ir_r3_k3_s2_e3_c40'], | |
# stage 3, 28x28 in | |
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112'], | |
# stage 5, 14x14in | |
['ir_r3_k3_s2_e6_c160'], | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c960'], | |
] | |
else: | |
act_layer = 'hard_swish' | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16_nre'], # relu | |
# stage 1, 112x112 in | |
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu | |
# stage 2, 56x56 in | |
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu | |
# stage 3, 28x28 in | |
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish | |
# stage 5, 14x14in | |
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c960'], # hard-swish | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
num_features=num_features, | |
stem_size=16, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, act_layer), | |
se_kwargs=dict( | |
act_layer=get_act_layer('relu'), gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True, divisor=8), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs, | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def mobilenetv3_rw(pretrained=False, **kwargs): | |
""" MobileNet-V3 RW | |
Attn: See note in gen function for this variant. | |
""" | |
# NOTE for train set drop_rate=0.2 | |
if pretrained: | |
# pretrained model trained with non-default BN epsilon | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_large_075(pretrained=False, **kwargs): | |
""" MobileNet V3 Large 0.75""" | |
# NOTE for train set drop_rate=0.2 | |
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_large_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Large 1.0 """ | |
# NOTE for train set drop_rate=0.2 | |
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_large_minimal_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Large (Minimalistic) 1.0 """ | |
# NOTE for train set drop_rate=0.2 | |
model = _gen_mobilenet_v3('mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_small_075(pretrained=False, **kwargs): | |
""" MobileNet V3 Small 0.75 """ | |
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_small_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Small 1.0 """ | |
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_small_minimal_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Small (Minimalistic) 1.0 """ | |
model = _gen_mobilenet_v3('mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_large_075(pretrained=False, **kwargs): | |
""" MobileNet V3 Large 0.75. Tensorflow compat variant. """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_large_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Large 1.0. Tensorflow compat variant. """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Large Minimalistic 1.0. Tensorflow compat variant. """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_small_075(pretrained=False, **kwargs): | |
""" MobileNet V3 Small 0.75. Tensorflow compat variant. """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_small_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Small 1.0. Tensorflow compat variant.""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs): | |
""" MobileNet V3 Small Minimalistic 1.0. Tensorflow compat variant. """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |