Spaces:
Runtime error
Runtime error
File size: 15,009 Bytes
53a077e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
""" MobileNet-V3
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl.
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch.nn as nn
import torch.nn.functional as F
from .activations import get_act_fn, get_act_layer, HardSwish
from .config import layer_config_kwargs
from .conv2d_layers import select_conv2d
from .helpers import load_pretrained
from .efficientnet_builder import *
__all__ = ['mobilenetv3_rw', 'mobilenetv3_large_075', 'mobilenetv3_large_100', 'mobilenetv3_large_minimal_100',
'mobilenetv3_small_075', 'mobilenetv3_small_100', 'mobilenetv3_small_minimal_100',
'tf_mobilenetv3_large_075', 'tf_mobilenetv3_large_100', 'tf_mobilenetv3_large_minimal_100',
'tf_mobilenetv3_small_075', 'tf_mobilenetv3_small_100', 'tf_mobilenetv3_small_minimal_100']
model_urls = {
'mobilenetv3_rw':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
'mobilenetv3_large_075': None,
'mobilenetv3_large_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth',
'mobilenetv3_large_minimal_100': None,
'mobilenetv3_small_075': None,
'mobilenetv3_small_100': None,
'mobilenetv3_small_minimal_100': None,
'tf_mobilenetv3_large_075':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
'tf_mobilenetv3_large_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
'tf_mobilenetv3_large_minimal_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
'tf_mobilenetv3_small_075':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
'tf_mobilenetv3_small_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
'tf_mobilenetv3_small_minimal_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
}
class MobileNetV3(nn.Module):
""" MobileNet-V3
A this model utilizes the MobileNet-v3 specific 'efficient head', where global pooling is done before the
head convolution without a final batch-norm layer before the classifier.
Paper: https://arxiv.org/abs/1905.02244
"""
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
channel_multiplier=1.0, pad_type='', act_layer=HardSwish, drop_rate=0., drop_connect_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'):
super(MobileNetV3, self).__init__()
self.drop_rate = drop_rate
stem_size = round_channels(stem_size, channel_multiplier)
self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
self.bn1 = nn.BatchNorm2d(stem_size, **norm_kwargs)
self.act1 = act_layer(inplace=True)
in_chs = stem_size
builder = EfficientNetBuilder(
channel_multiplier, pad_type=pad_type, act_layer=act_layer, se_kwargs=se_kwargs,
norm_layer=norm_layer, norm_kwargs=norm_kwargs, drop_connect_rate=drop_connect_rate)
self.blocks = nn.Sequential(*builder(in_chs, block_args))
in_chs = builder.in_chs
self.global_pool = nn.AdaptiveAvgPool2d(1)
self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type, bias=head_bias)
self.act2 = act_layer(inplace=True)
self.classifier = nn.Linear(num_features, num_classes)
for m in self.modules():
if weight_init == 'goog':
initialize_weight_goog(m)
else:
initialize_weight_default(m)
def as_sequential(self):
layers = [self.conv_stem, self.bn1, self.act1]
layers.extend(self.blocks)
layers.extend([
self.global_pool, self.conv_head, self.act2,
nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier])
return nn.Sequential(*layers)
def features(self, x):
x = self.conv_stem(x)
x = self.bn1(x)
x = self.act1(x)
x = self.blocks(x)
x = self.global_pool(x)
x = self.conv_head(x)
x = self.act2(x)
return x
def forward(self, x):
x = self.features(x)
x = x.flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return self.classifier(x)
def _create_model(model_kwargs, variant, pretrained=False):
as_sequential = model_kwargs.pop('as_sequential', False)
model = MobileNetV3(**model_kwargs)
if pretrained and model_urls[variant]:
load_pretrained(model, model_urls[variant])
if as_sequential:
model = model.as_sequential()
return model
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
"""Creates a MobileNet-V3 model (RW variant).
Paper: https://arxiv.org/abs/1905.02244
This was my first attempt at reproducing the MobileNet-V3 from paper alone. It came close to the
eventual Tensorflow reference impl but has a few differences:
1. This model has no bias on the head convolution
2. This model forces no residual (noskip) on the first DWS block, this is different than MnasNet
3. This model always uses ReLU for the SE activation layer, other models in the family inherit their act layer
from their parent block
4. This model does not enforce divisible by 8 limitation on the SE reduction channel count
Overall the changes are fairly minor and result in a very small parameter count difference and no
top-1/5
Args:
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
# stage 2, 56x56 in
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
# stage 3, 28x28 in
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
# stage 5, 14x14in
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'], # hard-swish
]
with layer_config_kwargs(kwargs):
model_kwargs = dict(
block_args=decode_arch_def(arch_def),
head_bias=False, # one of my mistakes
channel_multiplier=channel_multiplier,
act_layer=resolve_act_layer(kwargs, 'hard_swish'),
se_kwargs=dict(gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True),
norm_kwargs=resolve_bn_args(kwargs),
**kwargs,
)
model = _create_model(model_kwargs, variant, pretrained)
return model
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
"""Creates a MobileNet-V3 large/small/minimal models.
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
Paper: https://arxiv.org/abs/1905.02244
Args:
channel_multiplier: multiplier to number of channels per layer.
"""
if 'small' in variant:
num_features = 1024
if 'minimal' in variant:
act_layer = 'relu'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s2_e1_c16'],
# stage 1, 56x56 in
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'],
# stage 2, 28x28 in
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'],
# stage 3, 14x14 in
['ir_r2_k3_s1_e3_c48'],
# stage 4, 14x14in
['ir_r3_k3_s2_e6_c96'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c576'],
]
else:
act_layer = 'hard_swish'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu
# stage 1, 56x56 in
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu
# stage 2, 28x28 in
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish
# stage 3, 14x14 in
['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish
# stage 4, 14x14in
['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c576'], # hard-swish
]
else:
num_features = 1280
if 'minimal' in variant:
act_layer = 'relu'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16'],
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'],
# stage 2, 56x56 in
['ir_r3_k3_s2_e3_c40'],
# stage 3, 28x28 in
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112'],
# stage 5, 14x14in
['ir_r3_k3_s2_e6_c160'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'],
]
else:
act_layer = 'hard_swish'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16_nre'], # relu
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
# stage 2, 56x56 in
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
# stage 3, 28x28 in
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
# stage 5, 14x14in
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'], # hard-swish
]
with layer_config_kwargs(kwargs):
model_kwargs = dict(
block_args=decode_arch_def(arch_def),
num_features=num_features,
stem_size=16,
channel_multiplier=channel_multiplier,
act_layer=resolve_act_layer(kwargs, act_layer),
se_kwargs=dict(
act_layer=get_act_layer('relu'), gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True, divisor=8),
norm_kwargs=resolve_bn_args(kwargs),
**kwargs,
)
model = _create_model(model_kwargs, variant, pretrained)
return model
def mobilenetv3_rw(pretrained=False, **kwargs):
""" MobileNet-V3 RW
Attn: See note in gen function for this variant.
"""
# NOTE for train set drop_rate=0.2
if pretrained:
# pretrained model trained with non-default BN epsilon
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_large_075(pretrained=False, **kwargs):
""" MobileNet V3 Large 0.75"""
# NOTE for train set drop_rate=0.2
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_large_100(pretrained=False, **kwargs):
""" MobileNet V3 Large 1.0 """
# NOTE for train set drop_rate=0.2
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Large (Minimalistic) 1.0 """
# NOTE for train set drop_rate=0.2
model = _gen_mobilenet_v3('mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_small_075(pretrained=False, **kwargs):
""" MobileNet V3 Small 0.75 """
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_small_100(pretrained=False, **kwargs):
""" MobileNet V3 Small 1.0 """
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Small (Minimalistic) 1.0 """
model = _gen_mobilenet_v3('mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_large_075(pretrained=False, **kwargs):
""" MobileNet V3 Large 0.75. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_large_100(pretrained=False, **kwargs):
""" MobileNet V3 Large 1.0. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Large Minimalistic 1.0. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_small_075(pretrained=False, **kwargs):
""" MobileNet V3 Small 0.75. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_small_100(pretrained=False, **kwargs):
""" MobileNet V3 Small 1.0. Tensorflow compat variant."""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Small Minimalistic 1.0. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
|