File size: 5,740 Bytes
4f3e60d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from urlextract import URLExtract
from wordcloud import WordCloud
import pandas as pd
from collections import Counter
import emoji

extract = URLExtract()

def fetch_stats(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    num_messages = df.shape[0]
    words = [word for message in df['message'] for word in message.split()]
    num_media_messages = df[df['message'] == '<Media omitted>\n'].shape[0]
    links = [url for message in df['message'] for url in extract.find_urls(message)]

    return num_messages, len(words), num_media_messages, len(links)

def most_busy_users(df):
    x = df['user'].value_counts().head()
    percent_df = round((df['user'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(columns={'index': 'name', 'user': 'percent'})
    return x, percent_df

def create_wordcloud(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    wc = WordCloud(width=500, height=500, min_font_size=10, background_color='white')
    df_wc = wc.generate(temp['message'].str.cat(sep=" "))
    return df_wc

def most_common_words(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    words = [word.lower() for message in temp['message'] for word in message.split()]
    most_common_df = pd.DataFrame(Counter(words).most_common(20))
    return most_common_df

def emoji_helper(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    emojis = [c for message in df['message'] for c in message if c in emoji.EMOJI_DATA]
    emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
    return emoji_df

def monthly_timeline(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    timeline = df.groupby(['year', 'month_num', 'month']).count()['message'].reset_index()

    time = [f"{timeline['month'][i]}-{timeline['year'][i]}" for i in range(timeline.shape[0])]
    timeline['time'] = time
    return timeline

def daily_timeline(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    daily_timeline = df.groupby('only_date').count()['message'].reset_index()
    return daily_timeline

def week_activity_map(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    return df['day_name'].value_counts()

def month_activity_map(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    return df['month'].value_counts()

def activity_heatmap(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    user_heatmap = df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0)
    return user_heatmap

def words_per_user_per_month(df):
    words_per_month = df.groupby(['user', 'year', 'month_num'])['message'].apply(lambda x: ' '.join(x)).reset_index()
    words_per_month['word_count'] = words_per_month['message'].apply(lambda x: len(x.split()))
    words_per_month_df = words_per_month.pivot(index=['year', 'month_num'], columns='user', values='word_count').fillna(0).astype(int)
    return words_per_month_df

def frequent_hours(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    frequent_hours_df = df['hour'].value_counts().sort_index()
    return frequent_hours_df

def common_words_by_four_hours(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    common_words_by_hour = {}
    for hour in range(0, 24, 4):
        period = temp[(temp['hour'] >= hour) & (temp['hour'] < hour + 4)]
        words = [word.lower() for message in period['message'] for word in message.split()]
        common_words_by_hour[f"{hour}-{hour + 4}"] = Counter(words).most_common(10)

    common_words_by_hour_df = pd.DataFrame.from_dict(common_words_by_hour, orient='index').fillna('').astype(str)
    return common_words_by_hour_df

def create_wordcloud_by_four_hours(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    wordclouds = {}
    for hour in range(0, 24, 4):
        period = temp[(temp['hour'] >= hour) & (temp['hour'] < hour + 4)]
        wc = WordCloud(width=500, height=500, min_font_size=10, background_color='white')
        wc_img = wc.generate(period['message'].str.cat(sep=" "))
        wordclouds[f"{hour}-{hour + 4}"] = wc_img

    return wordclouds

def common_words_by_month(selected_user, df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    common_words_by_month = {}
    for month in df['month_num'].unique():
        monthly_messages = temp[temp['month_num'] == month]
        words = [word.lower() for message in monthly_messages['message'] for word in message.split()]
        common_words_by_month[month] = Counter(words).most_common(10)

    common_words_by_month_df = pd.DataFrame.from_dict(common_words_by_month, orient='index').fillna('').astype(str)
    return common_words_by_month_df