Soufianesejjari
commited on
Commit
•
4f3e60d
1
Parent(s):
ac5445a
my app
Browse files- app.py +156 -0
- helper.py +146 -0
- preprocessor.py +51 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import preprocessor
|
3 |
+
import helper
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
+
|
10 |
+
st.sidebar.title("WhatsApp Chat Analyzer")
|
11 |
+
|
12 |
+
uploaded_file = st.sidebar.file_uploader("Choose a file")
|
13 |
+
if uploaded_file is not None:
|
14 |
+
bytes_data = uploaded_file.getvalue()
|
15 |
+
data = bytes_data.decode("utf-8")
|
16 |
+
df = preprocessor.preprocess(data)
|
17 |
+
|
18 |
+
# fetch unique users
|
19 |
+
user_list = df['user'].unique().tolist()
|
20 |
+
if 'group_notification' in user_list:
|
21 |
+
user_list.remove('group_notification')
|
22 |
+
user_list.sort()
|
23 |
+
user_list.insert(0, "Overall")
|
24 |
+
|
25 |
+
selected_user = st.sidebar.selectbox("Show analysis wrt", user_list)
|
26 |
+
|
27 |
+
if st.sidebar.button("Show Analysis"):
|
28 |
+
|
29 |
+
# Stats Area
|
30 |
+
num_messages, words, num_media_messages, num_links = helper.fetch_stats(selected_user, df)
|
31 |
+
st.title("Top Statistics")
|
32 |
+
col1, col2, col3, col4 = st.columns(4)
|
33 |
+
|
34 |
+
with col1:
|
35 |
+
st.header("Total Messages")
|
36 |
+
st.title(num_messages)
|
37 |
+
with col2:
|
38 |
+
st.header("Total Words")
|
39 |
+
st.title(words)
|
40 |
+
with col3:
|
41 |
+
st.header("Media Shared")
|
42 |
+
st.title(num_media_messages)
|
43 |
+
with col4:
|
44 |
+
st.header("Links Shared")
|
45 |
+
st.title(num_links)
|
46 |
+
|
47 |
+
# Monthly Timeline
|
48 |
+
st.title("Monthly Timeline")
|
49 |
+
timeline = helper.monthly_timeline(selected_user, df)
|
50 |
+
fig, ax = plt.subplots()
|
51 |
+
ax.plot(timeline['time'], timeline['message'], color='green')
|
52 |
+
plt.xticks(rotation='vertical')
|
53 |
+
st.pyplot(fig)
|
54 |
+
|
55 |
+
# Daily Timeline
|
56 |
+
st.title("Daily Timeline")
|
57 |
+
daily_timeline = helper.daily_timeline(selected_user, df)
|
58 |
+
fig, ax = plt.subplots()
|
59 |
+
ax.plot(daily_timeline['only_date'], daily_timeline['message'], color='black')
|
60 |
+
plt.xticks(rotation='vertical')
|
61 |
+
st.pyplot(fig)
|
62 |
+
|
63 |
+
# Activity Map
|
64 |
+
st.title('Activity Map')
|
65 |
+
col1, col2 = st.columns(2)
|
66 |
+
|
67 |
+
with col1:
|
68 |
+
st.header("Most busy day")
|
69 |
+
busy_day = helper.week_activity_map(selected_user, df)
|
70 |
+
fig, ax = plt.subplots()
|
71 |
+
ax.bar(busy_day.index, busy_day.values, color='purple')
|
72 |
+
plt.xticks(rotation='vertical')
|
73 |
+
st.pyplot(fig)
|
74 |
+
|
75 |
+
with col2:
|
76 |
+
st.header("Most busy month")
|
77 |
+
busy_month = helper.month_activity_map(selected_user, df)
|
78 |
+
fig, ax = plt.subplots()
|
79 |
+
ax.bar(busy_month.index, busy_month.values, color='orange')
|
80 |
+
plt.xticks(rotation='vertical')
|
81 |
+
st.pyplot(fig)
|
82 |
+
|
83 |
+
# Weekly Activity Map
|
84 |
+
st.title("Weekly Activity Map")
|
85 |
+
user_heatmap = helper.activity_heatmap(selected_user, df)
|
86 |
+
fig, ax = plt.subplots()
|
87 |
+
ax = sns.heatmap(user_heatmap, annot=True, fmt="g", cmap="YlGnBu", cbar=False)
|
88 |
+
st.pyplot(fig)
|
89 |
+
|
90 |
+
# Most Busy Users (Overall)
|
91 |
+
if selected_user == 'Overall':
|
92 |
+
st.title('Most Busy Users')
|
93 |
+
x, new_df = helper.most_busy_users(df)
|
94 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
95 |
+
|
96 |
+
col1, col2 = st.columns(2)
|
97 |
+
|
98 |
+
with col1:
|
99 |
+
ax.bar(x.index, x.values, color='red')
|
100 |
+
plt.xticks(rotation='vertical')
|
101 |
+
st.pyplot(fig)
|
102 |
+
with col2:
|
103 |
+
st.dataframe(new_df)
|
104 |
+
|
105 |
+
# WordCloud
|
106 |
+
st.title("Wordcloud")
|
107 |
+
df_wc = helper.create_wordcloud(selected_user, df)
|
108 |
+
fig, ax = plt.subplots()
|
109 |
+
ax.imshow(df_wc)
|
110 |
+
st.pyplot(fig)
|
111 |
+
|
112 |
+
# Most Common Words
|
113 |
+
st.title('Most Common Words')
|
114 |
+
most_common_df = helper.most_common_words(selected_user, df)
|
115 |
+
fig, ax = plt.subplots()
|
116 |
+
ax.barh(most_common_df[0], most_common_df[1])
|
117 |
+
plt.xticks(rotation='vertical')
|
118 |
+
st.pyplot(fig)
|
119 |
+
|
120 |
+
# Emoji Analysis
|
121 |
+
st.title("Emoji Analysis")
|
122 |
+
emoji_df = helper.emoji_helper(selected_user, df)
|
123 |
+
col1, col2 = st.columns(2)
|
124 |
+
with col1:
|
125 |
+
st.dataframe(emoji_df)
|
126 |
+
with col2:
|
127 |
+
fig, ax = plt.subplots()
|
128 |
+
ax.pie(emoji_df[1].head(), labels=emoji_df[0].head(), autopct="%0.2f")
|
129 |
+
st.pyplot(fig)
|
130 |
+
|
131 |
+
# Words per User per Month
|
132 |
+
st.title("Words per User per Month")
|
133 |
+
words_per_month_df = helper.words_per_user_per_month(df)
|
134 |
+
st.dataframe(words_per_month_df)
|
135 |
+
|
136 |
+
# Frequent Hours
|
137 |
+
st.title("Frequent Hours")
|
138 |
+
frequent_hours_df = helper.frequent_hours(selected_user, df)
|
139 |
+
st.bar_chart(frequent_hours_df)
|
140 |
+
|
141 |
+
# Common Words by 4-Hour Intervals
|
142 |
+
st.title("Common Words by 4-Hour Intervals")
|
143 |
+
common_words_by_hour_df = helper.common_words_by_four_hours(selected_user, df)
|
144 |
+
st.dataframe(common_words_by_hour_df)
|
145 |
+
|
146 |
+
# WordClouds by 4-Hour Intervals
|
147 |
+
st.title("WordClouds by 4-Hour Intervals")
|
148 |
+
wordclouds_by_hour = helper.create_wordcloud_by_four_hours(selected_user, df)
|
149 |
+
for period, wc_img in wordclouds_by_hour.items():
|
150 |
+
st.subheader(f"WordCloud for {period}")
|
151 |
+
st.image(wc_img.to_array(), use_column_width=True)
|
152 |
+
|
153 |
+
# Common Words by Month
|
154 |
+
st.title("Common Words by Month")
|
155 |
+
common_words_by_month_df = helper.common_words_by_month(selected_user, df)
|
156 |
+
st.dataframe(common_words_by_month_df)
|
helper.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from urlextract import URLExtract
|
2 |
+
from wordcloud import WordCloud
|
3 |
+
import pandas as pd
|
4 |
+
from collections import Counter
|
5 |
+
import emoji
|
6 |
+
|
7 |
+
extract = URLExtract()
|
8 |
+
|
9 |
+
def fetch_stats(selected_user, df):
|
10 |
+
if selected_user != 'Overall':
|
11 |
+
df = df[df['user'] == selected_user]
|
12 |
+
|
13 |
+
num_messages = df.shape[0]
|
14 |
+
words = [word for message in df['message'] for word in message.split()]
|
15 |
+
num_media_messages = df[df['message'] == '<Media omitted>\n'].shape[0]
|
16 |
+
links = [url for message in df['message'] for url in extract.find_urls(message)]
|
17 |
+
|
18 |
+
return num_messages, len(words), num_media_messages, len(links)
|
19 |
+
|
20 |
+
def most_busy_users(df):
|
21 |
+
x = df['user'].value_counts().head()
|
22 |
+
percent_df = round((df['user'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(columns={'index': 'name', 'user': 'percent'})
|
23 |
+
return x, percent_df
|
24 |
+
|
25 |
+
def create_wordcloud(selected_user, df):
|
26 |
+
if selected_user != 'Overall':
|
27 |
+
df = df[df['user'] == selected_user]
|
28 |
+
|
29 |
+
temp = df[df['user'] != 'group_notification']
|
30 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
31 |
+
|
32 |
+
wc = WordCloud(width=500, height=500, min_font_size=10, background_color='white')
|
33 |
+
df_wc = wc.generate(temp['message'].str.cat(sep=" "))
|
34 |
+
return df_wc
|
35 |
+
|
36 |
+
def most_common_words(selected_user, df):
|
37 |
+
if selected_user != 'Overall':
|
38 |
+
df = df[df['user'] == selected_user]
|
39 |
+
|
40 |
+
temp = df[df['user'] != 'group_notification']
|
41 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
42 |
+
|
43 |
+
words = [word.lower() for message in temp['message'] for word in message.split()]
|
44 |
+
most_common_df = pd.DataFrame(Counter(words).most_common(20))
|
45 |
+
return most_common_df
|
46 |
+
|
47 |
+
def emoji_helper(selected_user, df):
|
48 |
+
if selected_user != 'Overall':
|
49 |
+
df = df[df['user'] == selected_user]
|
50 |
+
|
51 |
+
emojis = [c for message in df['message'] for c in message if c in emoji.EMOJI_DATA]
|
52 |
+
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
|
53 |
+
return emoji_df
|
54 |
+
|
55 |
+
def monthly_timeline(selected_user, df):
|
56 |
+
if selected_user != 'Overall':
|
57 |
+
df = df[df['user'] == selected_user]
|
58 |
+
|
59 |
+
timeline = df.groupby(['year', 'month_num', 'month']).count()['message'].reset_index()
|
60 |
+
|
61 |
+
time = [f"{timeline['month'][i]}-{timeline['year'][i]}" for i in range(timeline.shape[0])]
|
62 |
+
timeline['time'] = time
|
63 |
+
return timeline
|
64 |
+
|
65 |
+
def daily_timeline(selected_user, df):
|
66 |
+
if selected_user != 'Overall':
|
67 |
+
df = df[df['user'] == selected_user]
|
68 |
+
|
69 |
+
daily_timeline = df.groupby('only_date').count()['message'].reset_index()
|
70 |
+
return daily_timeline
|
71 |
+
|
72 |
+
def week_activity_map(selected_user, df):
|
73 |
+
if selected_user != 'Overall':
|
74 |
+
df = df[df['user'] == selected_user]
|
75 |
+
return df['day_name'].value_counts()
|
76 |
+
|
77 |
+
def month_activity_map(selected_user, df):
|
78 |
+
if selected_user != 'Overall':
|
79 |
+
df = df[df['user'] == selected_user]
|
80 |
+
return df['month'].value_counts()
|
81 |
+
|
82 |
+
def activity_heatmap(selected_user, df):
|
83 |
+
if selected_user != 'Overall':
|
84 |
+
df = df[df['user'] == selected_user]
|
85 |
+
user_heatmap = df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0)
|
86 |
+
return user_heatmap
|
87 |
+
|
88 |
+
def words_per_user_per_month(df):
|
89 |
+
words_per_month = df.groupby(['user', 'year', 'month_num'])['message'].apply(lambda x: ' '.join(x)).reset_index()
|
90 |
+
words_per_month['word_count'] = words_per_month['message'].apply(lambda x: len(x.split()))
|
91 |
+
words_per_month_df = words_per_month.pivot(index=['year', 'month_num'], columns='user', values='word_count').fillna(0).astype(int)
|
92 |
+
return words_per_month_df
|
93 |
+
|
94 |
+
def frequent_hours(selected_user, df):
|
95 |
+
if selected_user != 'Overall':
|
96 |
+
df = df[df['user'] == selected_user]
|
97 |
+
frequent_hours_df = df['hour'].value_counts().sort_index()
|
98 |
+
return frequent_hours_df
|
99 |
+
|
100 |
+
def common_words_by_four_hours(selected_user, df):
|
101 |
+
if selected_user != 'Overall':
|
102 |
+
df = df[df['user'] == selected_user]
|
103 |
+
|
104 |
+
temp = df[df['user'] != 'group_notification']
|
105 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
106 |
+
|
107 |
+
common_words_by_hour = {}
|
108 |
+
for hour in range(0, 24, 4):
|
109 |
+
period = temp[(temp['hour'] >= hour) & (temp['hour'] < hour + 4)]
|
110 |
+
words = [word.lower() for message in period['message'] for word in message.split()]
|
111 |
+
common_words_by_hour[f"{hour}-{hour + 4}"] = Counter(words).most_common(10)
|
112 |
+
|
113 |
+
common_words_by_hour_df = pd.DataFrame.from_dict(common_words_by_hour, orient='index').fillna('').astype(str)
|
114 |
+
return common_words_by_hour_df
|
115 |
+
|
116 |
+
def create_wordcloud_by_four_hours(selected_user, df):
|
117 |
+
if selected_user != 'Overall':
|
118 |
+
df = df[df['user'] == selected_user]
|
119 |
+
|
120 |
+
temp = df[df['user'] != 'group_notification']
|
121 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
122 |
+
|
123 |
+
wordclouds = {}
|
124 |
+
for hour in range(0, 24, 4):
|
125 |
+
period = temp[(temp['hour'] >= hour) & (temp['hour'] < hour + 4)]
|
126 |
+
wc = WordCloud(width=500, height=500, min_font_size=10, background_color='white')
|
127 |
+
wc_img = wc.generate(period['message'].str.cat(sep=" "))
|
128 |
+
wordclouds[f"{hour}-{hour + 4}"] = wc_img
|
129 |
+
|
130 |
+
return wordclouds
|
131 |
+
|
132 |
+
def common_words_by_month(selected_user, df):
|
133 |
+
if selected_user != 'Overall':
|
134 |
+
df = df[df['user'] == selected_user]
|
135 |
+
|
136 |
+
temp = df[df['user'] != 'group_notification']
|
137 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
138 |
+
|
139 |
+
common_words_by_month = {}
|
140 |
+
for month in df['month_num'].unique():
|
141 |
+
monthly_messages = temp[temp['month_num'] == month]
|
142 |
+
words = [word.lower() for message in monthly_messages['message'] for word in message.split()]
|
143 |
+
common_words_by_month[month] = Counter(words).most_common(10)
|
144 |
+
|
145 |
+
common_words_by_month_df = pd.DataFrame.from_dict(common_words_by_month, orient='index').fillna('').astype(str)
|
146 |
+
return common_words_by_month_df
|
preprocessor.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def preprocess(data):
|
5 |
+
pattern = '\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s-\s'
|
6 |
+
|
7 |
+
messages = re.split(pattern, data)[1:]
|
8 |
+
dates = re.findall(pattern, data)
|
9 |
+
|
10 |
+
df = pd.DataFrame({'user_message': messages, 'message_date': dates})
|
11 |
+
# convert message_date type
|
12 |
+
df['message_date'] = pd.to_datetime(df['message_date'], format='%d/%m/%Y, %H:%M - ')
|
13 |
+
|
14 |
+
df.rename(columns={'message_date': 'date'}, inplace=True)
|
15 |
+
|
16 |
+
users = []
|
17 |
+
messages = []
|
18 |
+
for message in df['user_message']:
|
19 |
+
entry = re.split('([\w\W]+?):\s', message)
|
20 |
+
if entry[1:]: # user name
|
21 |
+
users.append(entry[1])
|
22 |
+
messages.append(" ".join(entry[2:]))
|
23 |
+
else:
|
24 |
+
users.append('group_notification')
|
25 |
+
messages.append(entry[0])
|
26 |
+
|
27 |
+
df['user'] = users
|
28 |
+
df['message'] = messages
|
29 |
+
df.drop(columns=['user_message'], inplace=True)
|
30 |
+
|
31 |
+
df['only_date'] = df['date'].dt.date
|
32 |
+
df['year'] = df['date'].dt.year
|
33 |
+
df['month_num'] = df['date'].dt.month
|
34 |
+
df['month'] = df['date'].dt.month_name()
|
35 |
+
df['day'] = df['date'].dt.day
|
36 |
+
df['day_name'] = df['date'].dt.day_name()
|
37 |
+
df['hour'] = df['date'].dt.hour
|
38 |
+
df['minute'] = df['date'].dt.minute
|
39 |
+
|
40 |
+
period = []
|
41 |
+
for hour in df[['day_name', 'hour']]['hour']:
|
42 |
+
if hour == 23:
|
43 |
+
period.append(str(hour) + "-" + str('00'))
|
44 |
+
elif hour == 0:
|
45 |
+
period.append(str('00') + "-" + str(hour + 1))
|
46 |
+
else:
|
47 |
+
period.append(str(hour) + "-" + str(hour + 1))
|
48 |
+
|
49 |
+
df['period'] = period
|
50 |
+
|
51 |
+
return df
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
matplotlib
|
3 |
+
seaborn
|
4 |
+
urlextract
|
5 |
+
wordcloud
|
6 |
+
pandas
|
7 |
+
emoji
|