|
import streamlit as st
|
|
|
|
import tensorflow as tf
|
|
from PIL import Image
|
|
import numpy as np
|
|
import cv2
|
|
from huggingface_hub import from_pretrained_keras
|
|
|
|
|
|
try:
|
|
model=from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
|
|
except:
|
|
model=tf.keras.models.load_model("dental_xray_seg.h5")
|
|
pass
|
|
|
|
st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
|
|
|
|
examples=["107.png","108.png","109.png"]
|
|
link='Check Out Our Github Repo ! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
|
|
st.markdown(link,unsafe_allow_html=True)
|
|
|
|
|
|
def load_image(image_file):
|
|
img = Image.open(image_file)
|
|
return img
|
|
|
|
def convert_one_channel(img):
|
|
|
|
if len(img.shape)>2:
|
|
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
return img
|
|
else:
|
|
return img
|
|
|
|
def convert_rgb(img):
|
|
|
|
if len(img.shape)==2:
|
|
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
|
|
return img
|
|
else:
|
|
return img
|
|
|
|
|
|
st.subheader("Upload Dental Panoramic X-ray Image Image")
|
|
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
|
|
|
|
|
col1, col2, col3 = st.columns(3)
|
|
with col1:
|
|
ex=load_image(examples[0])
|
|
st.image(ex,width=200)
|
|
if st.button('Example 1'):
|
|
image_file=examples[0]
|
|
|
|
with col2:
|
|
ex1=load_image(examples[1])
|
|
st.image(ex1,width=200)
|
|
if st.button('Example 2'):
|
|
image_file=examples[1]
|
|
|
|
|
|
with col3:
|
|
ex2=load_image(examples[2])
|
|
st.image(ex2,width=200)
|
|
if st.button('Example 3'):
|
|
image_file=examples[2]
|
|
|
|
|
|
if image_file is not None:
|
|
|
|
img=load_image(image_file)
|
|
|
|
st.text("Making A Prediction ....")
|
|
st.image(img,width=850)
|
|
|
|
img=np.asarray(img)
|
|
|
|
img_cv=convert_one_channel(img)
|
|
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
|
|
img_cv=np.float32(img_cv/255)
|
|
|
|
img_cv=np.reshape(img_cv,(1,512,512,1))
|
|
prediction=model.predict(img_cv)
|
|
predicted=prediction[0]
|
|
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
|
mask=np.uint8(predicted*255)
|
|
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
kernel =( np.ones((5,5), dtype=np.float32))
|
|
mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
|
|
mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
|
|
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3)
|
|
|
|
|
|
if output is not None :
|
|
st.subheader("Predicted Image")
|
|
st.write(output.shape)
|
|
st.image(output,width=850)
|
|
|
|
st.text("DONE ! ....")
|
|
|