File size: 3,061 Bytes
974cfa7
 
 
 
 
 
d61a390
974cfa7
 
9448c8e
 
 
 
 
 
974cfa7
 
30b7c80
974cfa7
 
 
 
 
 
 
 
 
 
 
b14c33b
974cfa7
 
 
 
30b7c80
 
 
 
 
 
 
 
 
f78e14f
974cfa7
30b7c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
974cfa7
30b7c80
974cfa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b7c80
 
 
 
974cfa7
30b7c80
 
974cfa7
 
30b7c80
 
974cfa7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st 

import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
from huggingface_hub import from_pretrained_keras


try:
    model=from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
except:
    model=tf.keras.models.load_model("dental_xray_seg.h5")
    pass
    
st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")

examples=["107.png","108.png","109.png"]
link='Check Out Our Github Repo ! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
st.markdown(link,unsafe_allow_html=True)


def load_image(image_file):
	img = Image.open(image_file)
	return img

def convert_one_channel(img):
    #some images have 3 channels , although they are grayscale image
    if len(img.shape)>2:
        img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        return img
    else:
        return img
    
def convert_rgb(img):
    #some images have 3 channels , although they are grayscale image
    if len(img.shape)==2:
        img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)  
        return img
    else:
        return img
    
    
st.subheader("Upload Dental Panoramic X-ray Image Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])


col1, col2, col3 = st.columns(3)
with col1:
    ex=load_image(examples[0])
    st.image(ex,width=200)
    if st.button('Example 1'):
        image_file=examples[0]

with col2:
    ex1=load_image(examples[1])
    st.image(ex1,width=200)
    if st.button('Example 2'):
        image_file=examples[1]


with col3:
    ex2=load_image(examples[2])
    st.image(ex2,width=200)
    if st.button('Example 3'):
        image_file=examples[2]
    
    
if image_file is not None:

      img=load_image(image_file)
      
      st.text("Making A Prediction ....")
      st.image(img,width=850)
      
      img=np.asarray(img)
  
      img_cv=convert_one_channel(img)
      img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
      img_cv=np.float32(img_cv/255)
      
      img_cv=np.reshape(img_cv,(1,512,512,1))
      prediction=model.predict(img_cv)
      predicted=prediction[0]
      predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
      mask=np.uint8(predicted*255)# 
      _, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
      kernel =( np.ones((5,5), dtype=np.float32))
      mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )  
      mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
      cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
      output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3)


      if output is not None :      
          st.subheader("Predicted Image")  
          st.write(output.shape)
          st.image(output,width=850)

      st.text("DONE ! ....")